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Summary

Mesh parameterization is a powerful geometry processing tool with numerous computer
graphics applications, from texture mapping to animation transfer. This course outlines
its mathematical foundations, describes recent methods for parameterizing meshes over
various domains, discusses emerging tools like global parameterization and inter-surface
mapping, and demonstrates a variety of parameterization applications.

Prerequisites

The audience should have had some prior exposure to mesh representation of geometric
models and a working knowledge of vector calculus, elementary linear algebra, and the
fundamentals of computer graphics. Optional pre-requisites: some lectures may also
assume some familiarity with differential geometry, graph theory, harmonic functions,
and numerical optimization.

Intended Audience

Graduate students, researchers, and application developers who seek to understand the
concepts and technologies used in mesh parameterization and wish to utilize them. Lis-
teners get an overview of the spectrum of processing applications that benefit from para-
meterization and learn how to evaluate different methods in terms of specific application
requirements.

Sources

These notes are largely based on the following survey papers, which can be found on the
author webpages:

• M. S. Floater and K. Hormann. Surface parameterization: a tutorial and sur-
vey. In Advances in Multiresolution for Geometric Modelling, Mathematics and
Visualization, pages 157–186. Springer, 2005.

• A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their
applications. Foundations and Trends in Computer Graphics and Vision, 2(2):105–
171, 2006.

• B. Lévy. Parameterization and deformation analysis on a manifold. Technical
report, ALICE, 2007. http://alice.loria.fr/publications.

• Source code (Graphite, OpenNL, . . . ) can be found from http://alice.loria.
fr/software.

Supplemental material and presentation slides are also available on the presenter web-
pages.
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Course Overview

For any two surfaces with similar topology, there exists a bijective mapping between
them. If one of these surfaces is a triangular mesh, the problem of computing such
a mapping is referred to as mesh parameterization. The surface that the mesh is
mapped to is typically called the parameter domain. Parameterization was introduced
to computer graphics for mapping textures onto surfaces. Over the last decade, it has
gradually become a ubiquitous tool for many mesh processing applications, including
detail-mapping, detail-transfer, morphing, mesh-editing, mesh-completion, remeshing,
compression, surface-fitting, and shape-analysis. In parallel to the increased interest in
applying parameterization, various methods were developed for different kinds of para-
meter domains and parameterization properties.

The goal of this course is to familiarize the audience with the theoretical and practical
aspects of mesh parameterization. We aim to provide the skills needed to implement or
improve existing methods, to investigate new approaches, and to critically evaluate the
suitability of the techniques for a particular application.

The course starts with an introduction to the general concept of parameterization
and an overview of its applications. The first half of the course then focuses on pla-
nar parameterizations while the second addresses more recent approaches for alternative
domains. The course covers the mathematical background, including intuitive expla-
nations of parameterization properties like bijectivity, conformality, stretch, and area-
preservation. The state-of-the-art is reviewed by explaining the main ideas of several
approaches, summarizing their properties, and illustrating them using live demos. The
course addresses practical aspects of implementing mesh parameterization discussing
numerical algorithms for robustly and efficiently parameterizing large meshes and pro-
viding tips on how to handle the variety of often contradicting criteria when choosing an
appropriate parameterization method for a specific target application. We conclude by
presenting a list of open research problems and potential applications that can benefit
from parameterization.

Speakers

Mathieu Desbrun, Caltech, USA

Mathieu Desbrun is an associate professor at the California Institute of Technology
(Caltech) in the Computer Science department. After receiving his Ph.D. from the
National Polytechnic Institute of Grenoble (INPG), he spent two years as a post-doctoral
researcher at Caltech before starting a research group at the University of Southern
California (USC). His research interests revolve around applying discrete differential
geometry (differential, yet readily-discretizable computational foundations) to a wide
range of fields and applications such as meshing, parameterization, smoothing, fluid and
solid mechanics, etc.
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Kai Hormann, Clausthal University of Technology, Germany

Kai Hormann is an assistant professor for Computer Graphics in the Department of
Informatics at Clausthal University of Technology in Germany. His research interests are
focussed on the mathematical foundations of geometry processing algorithms as well as
their applications in computer graphics and related fields. Dr. Hormann has co-authored
several papers on parameterization methods, surface reconstruction, and barycentric
coordinates. Kai Hormann received his PhD from the University of Erlangen in 2002
and spent two years as a postdoctoral research fellow at the Multi-Res Modeling Group
at Caltech, Pasadena and the CNR Institute of Information Science and Technologies in
Pisa, Italy.

Bruno Lévy, INRIA, France

Bruno Lévy is a Researcher with INRIA. He is the head of the ALICE INRIA Project-
Team. His main contributions concern texture mapping and parameterization methods
for triangulated surfaces, and are now used by some 3D modeling software (includ-
ing Maya, Silo, Blender, Gocad and Catia). He obtained his Ph.D in 1999, from the
INPL (Institut National Polytechnique de Lorraine). His work, entitled "Computational
Topology: Combinatorics and Embedding", was awarded the SPECIF price in 2000 (best
French Ph.D. thesis in Computer Sciences).

Alla Sheffer, University of British Columbia, Canada

Alla Sheffer is an assistant professor in the Computer Science department at the Uni-
versity of British Columbia (Canada). She conducts research in the areas of computer
graphics and computer aided engineering. Dr. Sheffer is predominantly interested in
the algorithmic aspects of digital geometry processing, focusing on several fundamental
problems of mesh manipulation and editing. Her recent research addresses algorithms
for mesh parameterization, processing of developable surfaces, mesh editing and segmen-
tation. She co-authored several parameterization methods which are used in popular 3D
modelers including Blender and Catia. Alla Sheffer received her PhD from the Hebrew
University of Jerusalem in 1999. She spent two years as a postdoctoral researcher in the
University of Illinois at Urbana-Champaign, and then two years as an assistant professor
at Technion, Israel.
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Kun Zhou is a Lead Researcher of the graphics group at Microsoft Research Asia. He
received his B.S. and Ph.D degrees in Computer Science from Zhejiang University in 1997
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Syllabus

Morning session

• Introduction [15 min, Alla]

• Differential Geometry Primer [30 min, Kai]

• Barycentric Mappings [30 min, Kai]

• Setting the Boundary Free [30 min, Bruno]

• Indirect methods - ABF and Circle Patterns [30 min, Alla]

• Making it work in practice - Segmentation and Constraints [45 min, Kun Zhou]

• Comparison and Applications of Planar Methods [30 min, Kai]

Afternoon session

• Spherical Parameterization [30 min, Alla]

• Discrete Exterior Calculus in a Nutshell [30 min, Mathieu]

• Global Parameterization [45 min, Mathieu]

• Cross-Parameterization/Inter-surface mapping [30 min, Alla]

• Making it work in practice - Numerical Aspects [30 min, Bruno]

• Comparison and Applications of Global Methods [30 min, Bruno]

• Open Problems and Q/A [15 min, all]
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Chapter 1

Introduction

Given any two surfaces with similar topology it is possible to compute a one-to-one and
onto mapping between them. If one of these surfaces is represented by a triangular mesh,
the problem of computing such a mapping is referred to as mesh parameterization. The
surface that the mesh is mapped to is typically referred to as the parameter domain.
Parameterizations between surface meshes and a variety of domains have numerous
applications in computer graphics and geometry processing as described below. In recent
years numerous methods for parameterizing meshes were developed, targeting diverse
parameter domains and focusing on different parameterization properties.

This course reviews the various parameterization methods, summarizing the main
ideas of each technique and focusing on the practical aspects of the methods. It also
provides examples of the results generated by many of the more popular methods. When
several methods address the same parameterization problem, the survey strives to pro-
vide an objective comparison between them based on criteria such as parameterization
quality, efficiency and robustness. We also discuss in detail the applications that benefit
from parameterization and the practical issues involved in implementing the different
techniques.

1.1 Applications

Surface parameterization was introduced to computer graphics as a method for mapping
textures onto surfaces [Bennis et al., 1991; Maillot et al., 1993]. Over the last decade, it
has gradually become a ubiquitous tool, useful for many mesh processing applications,
discussed below.

Detail Mapping

Detailed objects can be efficiently represented by a coarse geometric shape (polygonal
mesh or subdivision surface) with the details corresponding to each triangle stored in
a separate 2D array. In traditional texture mapping the details are the colors of the
respective pixels. Models can be further enriched by storing bump, normal, or displace-
ment maps. Recent techniques [Peng et al., 2004; Porumbescu et al., 2005] model a thick
region of space in the neighborhood of the surface by using a volumetric texture, rather
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Texture Mapping Normal Mapping Detail Transfer

Morphing Mesh Completion Editing

Databases Remeshing Surface Fitting

Figure 1.1: Parameterization Applications.

Figure 1.2: Application of parameterization: texture mapping (Least Squares Conformal
Maps implemented in the Open-Source Blender modeler).
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Figure 1.3: Application of parameterization: appearance-preserving simplification. All
the details are encoded in a normal map, applied onto a dramatically simplified version
of the model (1.5% of the original size).

Figure 1.4: A global parameterization realizes an abstraction of the initial geometry.
This abstraction can then be re-instanciated into alternative shape representations.
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than a 2D one. Such techniques are needed in order to model detail with complicated
topology or detail that cannot be easily approximated locally by a height field, such as
sparsely interwoven structures or animal fur. The natural way to map details to surfaces
is using planar parameterization.

Detail Synthesis

While the goal of texture mapping is to represent the complicated appearance of 3D
objects, several methods make use of mesh parameterization to create the local detail
necessary for a rich appearance. Such techniques can use as input flat patches with
sample detail, e.g. [Soler et al., 2002]; parametric or procedural models; or direct user
input and editing [Carr and Hart, 2004]. The type of detail can be quite varied and the
intermediate representations used to create it parallel the final representations used to
store it.

Morphing and Detail Transfer

A map between the surfaces of two objects allows the transfer of detail from one object
to another (e.g. [Praun et al., 2001]), or the interpolation between the shape and appear-
ance of several objects [Alexa, 2000; Kraevoy and Sheffer, 2004; Schreiner et al., 2004].
By varying the interpolation ratios over time, one can produce morphing animations.
In spatially-varying and frequency-varying morphs, the rate of change can be different
for different parts of the objects, or different frequency bands (coarseness of the features
being transformed) [Allen et al., 2003; Kraevoy and Sheffer, 2004]. Such a map can
either be computed directly or, as more commonly done, computed by mapping both
object surfaces to a common domain. In addition to transferring the static appearance
of surfaces, inter-surface parameterizations allow the transfer of animation data between
shapes, either by transferring the local surface influence from bones of an animation rig,
or by directly transferring the local affine transformation of each triangle in the mesh
[Sumner and Popović, 2004].

Mesh Completion

Meshes from range scans often contain holes and multiple components. Lévy [2003]
uses planar parameterization to obtain the natural shape for hole boundaries and to
triangulate those. In many cases, prior knowledge about the overall shape of the scanned
models exists. For instance, for human scans, templates of a generic human shape are
readily available. Allen et al. [2003] and Anguelov et al. [2005] use this prior knowledge to
facilitate completion of scans by computing a mapping between the scan and a template
human model. Kraevoy and Sheffer [2005] develop a more generic and robust template-
based approach for completion of any type of scans. The techniques typically use an
inter-surface parameterization between the template and the scan.
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Mesh Editing

Editing operations often benefit from a local parameterization between pairs of models.
Biermann et al. [2002] use local parameterization to facilitate cut-and-paste transfer of
details between models. They locally parameterize the regions of interest on the two
models in 2D and overlap the two parameterizations. They use the parameterization to
transfer shape properties from one model to the other. Lévy [2003] uses local parameter-
ization for mesh composition in a similar manner. They compute an overlapping planar
parameterization of the regions near the composition boundary on the input models and
use it to extract and smoothly blend shape information from the two models.

Creation of Object Databases

Once a large number of models are parameterized on a common domain one can perform
an analysis determining the common factors between objects and their distinguishing
traits. For example on a database of human shapes [Allen et al., 2003] the distinguishing
traits may be gender, height, and weight. Objects can be compared against the database
and scored against each of these dimensions, and the database can be used to create new
plausible object instances by interpolation or extrapolation of existing ones.

Remeshing

There are many possible triangulations that represent the same shape with similar levels
of accuracy. Some triangulation may be more desirable than others for different applica-
tions. For example, for numerical simulations on surfaces, triangles with a good aspect
ratio (that are not too small or too skinny are important for convergence and numerical
accuracy. One common way to remesh surfaces, or to replace one triangulation by an-
other, is to parameterize the surface, then map a desirable, well-understood, and easy
to create triangulation of the domain back to the original surface. For example, Gu
et al. [2002] use a regular grid sampling of a planar square domain, while other methods,
e.g. [Guskov et al., 2000] use regular subdivision (usually 1-to-4 triangle splits) on the
faces of a simplicial domain. Such locally regular meshes can usually support the cre-
ation of smooth surfaces as the limit process of applying subdivision rules. To generate
high quality triangulations, Desbrun et al. [2002] parameterize the input mesh in the
plane and then use planar Delaunay triangulation to obtain a high quality remeshing of
the surface. One problem these methods face is the appearance of visible discontinuities
along the cuts created to facilitate the parameterization. Surazhsky and Gotsman [2003]
avoid global parameterization, and instead use local parameterization to move vertices
along the mesh as part of an explicit remeshing scheme. Recent methods such as [Ray
et al., 2006] use global parameterization to generate a predominantly quadrilateral mesh
directly on the 3D surface.
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Mesh Compression

Mesh compression is used to compactly store or transmit geometric models. As with
other data, compression rates are inversely proportional to the data entropy. Thus higher
compression rates can be obtained when models are represented by meshes that are as
regular as possible, both topologically and geometrically. Topological regularity refers
to meshes where almost all vertices have the same degree. Geometric regularity implies
that triangles are similar to each other in terms of shape and size and vertices are close
to the centroid of their neighbors. Such meshes can be obtained by parameterizing the
original objects and then remeshing with regular sampling patterns [Gu et al., 2002].
The quality of the parameterization directly impacts the compression efficiency.

Surface Fitting

One of the earlier applications of mesh parameterization is surface fitting [Floater, 2000].
Many applications in geometry processing require a smooth analytical surface to be
constructed from an input mesh. A parameterization of the mesh over a base domain
significantly simplifies this task. Earlier methods either parameterized the entire mesh
in the plane or segmented it and parameterized each patch independently. More recent
methods, e.g. [Li et al., 2006] focus on constructing smooth global parameterizations
and use those for fitting, achieving global continuity of the constructed surfaces.

Modeling from Material Sheets

While computer graphics focuses on virtual models, geometry processing has numerous
real-world engineering applications. Particularly, planar mesh parameterization is an
important tool when modeling 3D objects from sheets of material, ranging from garment
modeling to metal forming or forging [Bennis et al., 1991; Julius et al., 2005]. All of
these applications require the computation of planar patterns to form the desired 3D
shapes. Typically, models are first segmented into nearly developable charts, and these
charts are then parameterized in the plane.

Medical Visualization

Complex geometric structures are often better visualized and analyzed by mapping the
surface normal-map, color, and other properties to a simpler, canonical domain. One of
the structures for which such mapping is particularly useful is the human brain [Hurdal
et al., 1999; Haker et al., 2000]. Most methods for brain mapping use the fact that the
brain has genus zero, and visualize it through spherical [Haker et al., 2000] or planar
[Hurdal et al., 1999] parameterization.
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Chapter 2

Differential Geometry Primer

Before we go into the details of how to compute a mesh parameterization and what to
do with it, let us quickly review some of the basic properties from differential geometry
that will be essential for understanding the motivation behind the methods described
later. For more details and proofs of these properties, we refer the interested reader
to the standard literature on differential geometry and in particular to the books by
do Carmo [1976], Klingenberg [1978], Kreyszig [1991], and Morgan [1998].

2.1 Basic Definitions

Suppose that Ω ⊂ R2 is some simply connected region (i.e., without any holes), for
example,

the unit square: Ω = {(u, v) ∈ R2 : u, v ∈ [0, 1]}, or
the unit disk : Ω = {(u, v) ∈ R2 : u2 + v2 ≤ 1},

and that the function f : Ω → R3 is continuous and an injection (i.e., no two distinct
points in Ω are mapped to the same point in R3). We then call the image S of Ω under
f a surface,

S = f(Ω) = {f(u, v) : (u, v) ∈ Ω},

and say that f is a parameterization of S over the parameter domain Ω. It follows from
the definition of S that f is actually a bijection between Ω and S and thus admits to
define its inverse f−1 : S → Ω. Here are some examples:

1. simple linear function:

parameter domain: Ω = {(u, v) ∈ R2 : u, v ∈ [0, 1]}
surface: S = {(x, y, z) ∈ R3 : x, y, z ∈ [0, 1], x + y = 1}

parameterization: f(u, v) = (u, 1− u, v)

inverse: f−1(x, y, z) = (x, z)
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2. cylinder:

parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
surface: S = {(x, y, z) ∈ R3 : x2 + y2 = 1, z ∈ [0, 1]}

parameterization: f(u, v) = (cos u, sin u, v)

inverse: f−1(x, y, z) = (arccos x, z)

3. paraboloid:

parameter domain: Ω = {(u, v) ∈ R2 : u, v ∈ [−1, 1]}
surface: S = {(x, y, z) ∈ R3 : x, y ∈ [−2, 2], z = 1

4
(x2 + y2)}

parameterization: f(u, v) = (2u, 2v, u2 + v2)

inverse: f−1(x, y, z) = (x
2
, y

2
)

8



4. hemisphere (orthographic):

parameter domain: Ω = {(u, v) ∈ R2 : u2 + v2 ≤ 1}
surface: S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z ≥ 0}

parameterization: f(u, v) = (u, v,
√

1− u2 − v2)

inverse: f−1(x, y, z) = (x, y)

Having defined a surface S like that, we should note that the function f is by no
means the only parameterization of S over Ω. In fact, given any bijection ϕ : Ω → Ω,
it is easy to verify that the composition of f and ϕ, i.e., the function g = f ◦ ϕ, is
a parameterization of S over Ω, too. For example, we can easily construct such a
reparameterization ϕ from any bijection ρ : [0, 1]→ [0, 1] by defining

for the unit square: ϕ(u, v) = (ρ(u), ρ(v)), or
for the unit disk: ϕ(u, v) = (uρ(u2 + v2), vρ(u2 + v2)).

In particular, taking the function ρ(x) = 2
1+x

and applying this reparameterization of
the unit disk to the parameterization of the hemisphere in the example above gives the
following alternative parameterization:

5. hemisphere (stereographic):

parameter domain: Ω = {(u, v) ∈ R2 : u2 + v2 ≤ 1}
surface: S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z ≥ 0}

parameterization: f(u, v) = ( 2u
1+u2+v2 ,

2v
1+u2+v2 ,

1−u2−v2

1+u2+v2 )

inverse: f−1(x, y, z) = ( x
1+z

, y
1+z

)
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2.2 Intrinsic Surface Properties

Although the parameterization of a surface is not unique—and we will later discuss how
to get the “best” parameterization with respect to certain criteria—it nevertheless is a
very handy thing to have as it allows to compute a variety of properties of the surface.
For example, if f is differentiable, then its partial derivatives

fu =
∂f

∂u
and fv =

∂f

∂v

span the local tangent plane and by simply taking their cross product and normalizing
the result we get the surface normal

nf =
fu × fv

‖fu × fv‖
.

To simplify the notation, we will often speak of fu and fv as the derivatives and of nf

as the surface normal, but we should keep in mind that formally all three are functions
from R2 to R3. In other words, for any point (u, v) ∈ Ω in the parameter domain, the
tangent plane at the surface point f(u, v) ∈ S is spanned by the two vectors fu(u, v)
and fv(u, v), and nf (u, v) is the normal vector at this point1. Again, let us clarify this
by considering two examples:

1. For the simple linear function f(u, v) = (u, 1− u, v) we get

fu(u, v) = (1,−1, 0) and fv(u, v) = (0, 0, 1)

and further
nf (u, v) = (−1√

2
, 1√

2
, 0),

showing that the normal vector is constant for all points on S.

2. For the parameterization of the cylinder, f(u, v) = (cos u, sin u, v), we get

fu(u, v) = (− sin u, cos u, 0) and fv(u, v) = (0, 0, 1)

and further
nf (u, v) = (cos u, sin u, 0),

showing that the normal vector at any point (x, y, z) ∈ S is just (x, y, 0).

Note that in both examples the surface normal is independent of the parameterization.
In fact, this holds for all surfaces and is therefore called an intrinsic property of the
surface. Formally, we can also say that the surface normal is a function n : S → S2,
where S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is the unit sphere in R3, so that

n(p) = nf (f
−1(p))

1We tacitly assume that the parameterization is regular, i.e., fu and fv are always linearly indepen-
dent and therefore nf is non-zero.
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for any p ∈ S and any parameterization f . As an exercise, you may want to verify this
for the two alternative parameterizations of the hemisphere given above. Other intrinsic
surface properties are the Gaussian curvature K(p) and the mean curvature H(p) as
well as the total area of the surface A(S). To compute the latter, we need the first
fundamental form

If =

(
fu · fu fu · fv

fv · fu fv · fv

)
=

(
E F
F G

)
,

where the product between the partial derivatives is the usual dot product in R3. It
follows immediately from the Cauchy-Schwarz inequality that the determinant of this
symmetric 2 × 2 matrix is always non-negative, so that its square root is always real.
The area of the surface is then defined as

A(S) =

∫
Ω

√
det If du dv.

Take, for example, the orthographic parameterization f(u, v) = (u, v,
√

1− u2 − v2)
of the hemisphere over the unit disk. After some simplifications we find that

det If =
1

1− u2 − v2

and can compute the area of the hemisphere as follows:

A(S) =

1∫
−1

√
1−v2∫

−
√

1−v2

1√
1− u2 − v2

du dv

=

1∫
−1

[
arcsin

u√
1− v2

]√1−v2

−
√

1−v2

dv

=

1∫
−1

π dv

= 2π,

as expected. Of course we get the same result if we use the stereographic parameteriza-
tion, and you may want to try that as an exercise.

In order to compute the curvatures we must first assume the parameterization to be
twice differentiable, so that its second order partial derivatives

fuu =
∂2f

∂u2
, fuv =

∂2f

∂u∂v
, and fvv =

∂2f

∂v2

are well defined. Taking the dot products of these derivatives with the surface normal
then gives the symmetric 2× 2 matrix that is known as the second fundamental form

IIf =

(
fuu · nf fuv · nf

fuv · nf fvv · nf

)
=

(
L M
M N

)
.
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Gaussian and mean curvature are finally defined as the determinant and half the trace
of the matrix I−1

f IIf , respectively:

K = det(I−1
f IIf ) =

det IIf

det If

=
LN −M2

EG− F 2

and
H = 1

2
trace(I−1

f IIf ) =
LG− 2MF + NE

2(EG− F 2)
.

For example, carrying out these computations reveals that the curvatures are constant
for most of the surfaces from above:

simple linear function: K = 0, H = 0,

cylinder: K = 0, H = 1
2
,

hemisphere: K = 1, H = −1.

As an exercise, show that the curvatures at any point p = (x, y, z) of the paraboloid
from above are K(p) = 1

4(1+z)2
and H(p) = 2+z

4(1+z)3/2 .

2.3 Metric Distortion

Apart from these intrinsic surface properties, there are others that depend on the pa-
rameterization, most importantly the metric distortion. Consider, for example, the two
parameterizations of the hemisphere above. In both cases, the image of the surface on
the right is overlaid by a regular grid, which actually is the image of the corresponding
grid in the parameter domain shown on the left. You will notice that the surface grid
looks more regular for the stereographic than for the orthographic projection and that
the latter considerably stretches the grid in the radial direction near the boundary.

To better understand this kind of stretching, let us see what happens to the surface
point f(u, v) as we move a tiny little bit away from (u, v) in the parameter domain. If
we denote this infinitesimal parameter displacement by (∆u, ∆v), then the new surface
point f(u + ∆u, v + ∆v) is approximately given by the first order Taylor expansion f̃ of
f around (u, v),

f̃(u + ∆u, v + ∆v) = f(u, v) + fu(u, v)∆u + fv(u, v)∆v.

This linear function maps all points in the vicinity of u = (u, v) into the tangent plane
Tp at p = f(u, v) ∈ S and transforms circles around u into ellipses around p (see
Figure 2.1). The latter property becomes obvious if we write the Taylor expansion more
compactly as

f̃(u + ∆u, v + ∆v) = p + Jf (u)
(
∆u
∆v

)
,

where Jf = (fu fv) is the Jacobian of f , i.e. the 3×2 matrix with the partial derivatives
of f as column vectors. Then using the singular value decomposition of the Jacobian,

Jf = UΣV T = U

(
σ1 0

0 σ2

0 0

)
V T ,

12



Figure 2.1: First order Taylor expansion f̃ of the parameterization f .

Figure 2.2: SVD decomposition of the mapping f̃ .

with singular values σ1 ≥ σ2 > 0 and orthonormal matrices U ∈ R3×3 and V ∈ R2×2

with column vectors U1, U2, U3, and V1, V2, respectively, we can split up the linear trans-
formation f̃ as shown in Figure 2.2:

1. The transformation V T first rotates all points around u such that the vectors V1

and V2 are in alignment with the u- and the v-axes afterwards.

2. The transformation Σ then stretches everything by the factor σ1 in the u- and by
σ2 in the v-direction.

3. The transformation U finally maps the unit vectors (1, 0) and (0, 1) to the vectors
U1 and U2 in the tangent plane Tp at p.

As a consequence, any circle of radius r around u will be mapped to an ellipse with
semi-axes of length rσ1 and rσ2 around p and the orthonormal frame [V1, V2] is mapped
to the orthogonal frame [σ1U1, σ2U2].

This transformation of circles into ellipses is called local metric distortion of the
parameterization as it shows how f behaves locally around some parameter point u ∈ Ω
and the corresponding surface point p = f(u) ∈ S. Moreover, all information about
this local metric distortion is hidden in the singular values σ1 and σ2. For example, if
both values are identical, then Jf is just a rotation plus uniform scaling and f does not
distort angles around u. Likewise, if the product of the singular values is 1, then the
area of any circle in the parameter domain is identical to the area of the corresponding
ellipse in the tangent plane and we say that f is locally area-preserving.

Computing the singular values directly is a bit tedious, so that we better resort to
the fact that the singular values of any matrix A are the square roots of the eigenvalues
of the matrix AT A. In our case, the matrix Jf

T Jf is an old acquaintance, namely the

13



first fundamental form,

Jf
T Jf =

(
fu

T

fv
T

)
(fu fv) = If =

(
E F
F G

)
,

and we can easily compute the two eigenvalues λ1 and λ2 of this symmetric matrix by
using the nifty little formula

λ1,2 = 1
2

(
(E + G)±

√
4F 2 + (E −G)2

)
.

We now summarize the main properties that a parameterization can have locally:

f is isometric or length-preserving ⇐⇒ σ1 = σ2 = 1 ⇐⇒ λ1 = λ2 = 1,

f is conformal or angle-preserving ⇐⇒ σ1 = σ2 ⇐⇒ λ1 = λ2,

f is equiareal or area-preserving ⇐⇒ σ1σ2 = 1 ⇐⇒ λ1λ2 = 1.

Obviously, any isometric mapping is conformal and equiareal, and every mapping that
is conformal and equiareal is also isometric, in short,

isometric ⇐⇒ conformal + equiareal.

Thus equipped, let us go back to the examples above and check their properties:

1. simple linear function:

parameterization: f(u, v) = (u, 1− u, v)

Jacobian: Jf =
(

1 0
−1 0
0 1

)
first fundamental form: If =

(
2 0
0 1

)
eigenvalues: λ1 = 2, λ2 = 1

This parameterization is neither conformal nor equiareal.

2. cylinder:

parameterization: f(u, v) = (cos u, sin u, v)

Jacobian: Jf =
(

cos u 0
− sin u 0

0 1

)
first fundamental form: If =

(
1 0
0 1

)
eigenvalues: λ1 = 1, λ2 = 1

This parameterization is isometric.
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3. paraboloid:

parameterization: f(u, v) = (2u, 2v, u2 + v2)

Jacobian: Jf =
(

2 0
0 2
2u 2v

)
first fundamental form: If =

(
4+4u2 4uv

4uv 4+4v2

)
eigenvalues: λ1 = 4, λ2 = 4(1 + u2 + v2)

This mapping is not equiareal and conformal only at (u, v) = (0, 0).

4. hemisphere (orthographic):

parameterization: f(u, v) = (u, v, 1
d
) with d = 1√

1−u2−v2

Jacobian: Jf =
( 1 0

0 1
−ud −vd

)
first fundamental form: If =

(
1+u2d2 uvd2

uvd2 1+v2d2

)
eigenvalues: λ1 = 1, λ2 = d2

This mapping is isometric at (u, v) = (0, 0), but neither conformal nor equiareal
elsewhere.

5. hemisphere (stereographic):

parameterization: f(u, v) = (2ud, 2vd, (1− u2 − v2)d) with d = 1
1+u2+v2

Jacobian: Jf =

(
2d−4u2d2 −4uvd2

−4uvd2 2d−4v2d2

−4ud2 −4vd2

)
first fundamental form: If =

(
4d2 0
0 4d2

)
eigenvalues: λ1 = 4d2, λ2 = 4d2

This mapping is always conformal, but equiareal and thus isometric only at the
boundary of Ω, i.e., for u2 + v2 = 1.

It turns out that the only parameterization that is optimal in the sense that it is
isometric everywhere and thus does not introduce any distortion at all is the one for the
cylinder. In fact, it was shown by Gauß [1827] that a globally isometric parameteriza-
tion exists only for developable surfaces like planes, cones, and cylinders with vanishing
Gaussian curvature K(p) = 0 at all surface points p ∈ S. As an exercise, you can try
to find such a globally isometric parameterization for the planar surface patch from the
first example.

Other interesting parameterizations are those that are globally conformal like the
stereographic projection for the hemisphere, and it was shown by Riemann [1851] that

15



such a parameterization exists for any surface that is topologically equivalent to a disk
and any simply connected parameter domain.

More generally, the “best” parameterization f of a surface S over a parameter domain
Ω is found as follows. We first need a bivariate non-negative function E : R2

+ → R+

that measures the local distortion of a parameterization with singular values σ1 and
σ2. Usually, this function has a global minimum at (1, 1) so as to favour isometry, but
depending on the application, it may also be defined such that the minimal value is
taken along the whole line (x, x) for x ∈ R+, for example, if conformal mappings shall
be preferred. The overall distortion of a particular parameterization f is then measured
by simply averaging the local distortion over the whole domain,

E(f) =

∫
Ω

E(σ1(u, v), σ2(u, v)) du dv
/

A(Ω),

and the best parameterization with respect to E is then found by minimizing E(f) over
the space of all admissible parameterizations.
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Chapter 3

Barycentric Mappings

In many applications, and in particular in computer graphics, it is nowadays common
to work with piecewise linear surfaces in the form of triangle meshes, and we will mainly
stick to this type of surface for the remainder of these course notes.

3.1 Triangle Meshes

As in the previous chapter, let us denote points in R3 by p = (x, y, z) and points in
R2 by u = (u, v). An edge is then defined as the convex hull of (or, equivalently, the
line segment between) two distinct points and a triangle as the convex hull of three
non-collinear points. We will denote edges and triangles in R3 with capital letters and
those in R2 with small letters, for example, e = [u1, u2] and T = [p1, p2, p3].

A triangle mesh ST is the union of a set of surface triangles T = {T1, . . . , Tm} which
intersect only at common edges E = {E1, . . . , El} and vertices V = {p1, . . . ,pn+b}. More
specifically, the set of vertices consists of n interior vertices VI = {p1, . . . ,pn} and b
boundary vertices VB = {pn+1, . . . ,pn+b}. Two distinct vertices pi, pj ∈ V are called
neighbours, if they are the end points of some edge E = [pi, pj] ∈ E , and for any pi ∈ V
we let Ni = {j : [pi, pj] ∈ E} be the set of indices of all neighbours of pi.

A parameterization f of ST is usually specified the other way around, that is, by
defining the inverse parameterization g = f−1. This mapping g is uniquely determined
by specifying the parameter points ui = g(pi) for each vertex pi ∈ V and demanding that
g is continuous and linear for each triangle. In this setting, g|T is the linear map from a
surface triangle T = [pi, pj, pk] to the corresponding parameter triangle t = [ui, uj, uk]

and f |t = (g|T )−1 is the inverse linear map from t to T . The parameter domain Ω finally
is the union of all parameter triangles (see Figure 3.1).

3.2 Parameterization by Affine Combinations

A rather simple idea for constructing a parameterization of a triangle mesh is based on
the following physical model. Imagine that the edges of the triangle mesh are springs
that are connected at the vertices. If we now fix the boundary of this spring network
somewhere in the plane, then the interior of this network will relax in the energetically
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ST

Ω

f|t

t T

g|T

Figure 3.1: Parameterization of a triangle mesh.

most efficient configuration, and we can simply assign the positions where the joints of
the network have come to rest as parameter points.

If we assume each spring to be ideal in the sense that the rest length is zero and the
potential energy is just 1

2
Ds2, where D is the spring constant and s the length of the

spring, then we can formalize this approach as follows. We first specify the parameter
points ui = (ui, vi), i = n + 1, . . . , n + b for the boundary vertices pi ∈ VB of the mesh
in some way (see Section 3.4). Then we minimize the overall spring energy

E = 1
2

n∑
i=1

∑
j∈Ni

1
2
Dij‖ui − uj‖2,

where Dij = Dji is the spring constant of the spring between pi and pj, with respect
to the unknown parameter positions ui = (ui, vi) for the interior points1. As the partial
derivative of E with respect to ui is

∂E

∂ui

=
∑
j∈Ni

Dij(ui − uj),

the minimum of E is obtained if∑
j∈Ni

Dijui =
∑
j∈Ni

Dijuj

holds for all i = 1, . . . , n. This is equivalent to saying that each interior parameter point
ui is an affine combination of its neighbours,

ui =
∑
j∈Ni

λijuj, (3.1)

with normalized coefficients
λij = Dij

/∑
k∈Ni

Dik

that obviously sum to 1.
1The additional factor 1

2 appears because summing up the edges in this way counts every edge twice.
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By separating the parameter points for the interior and the boundary vertices in the
sum on the right hand side of (3.1) we get

ui −
∑

j∈Ni,j≤n

λijuj =
∑

j∈Ni,j>n

λijuj,

and see that computing the coordinates ui and vi of the interior parameter points ui

requires to solve the linear systems

AU = Ū and AV = V̄ , (3.2)

where U = (u1, . . . , un) and V = (v1, . . . , vn) are the column vectors of unknown coordi-
nates, Ū = (ū1, . . . , ūn) and V̄ = (v̄1, . . . , v̄n) are the column vectors with coefficients

ūi =
∑

j∈Ni,j>n

λijuj and v̄i =
∑

j∈Ni,j>n

λijvj

and A = (aij)i,j=1,...,n is the n× n matrix with elements

aij =


1 if i = j,

−λij if j ∈ Ni,

0 otherwise.

Methods for efficiently solving these systems are described in Chapter 10 of these course
notes.

3.3 Barycentric Coordinates

The question remains how to choose the spring constants Dij in the spring model, or
more generally, the normalized coefficients λij in (3.1). The simplest choice of constant
spring constants Dij = 1 goes back to the work of Tutte [1960, 1963] who used it in
a more abstract graph-theoretic setting to compute straight line embeddings of planar
graphs, and the idea of taking spring constants that are proportional to the lengths of
the corresponding edges in the triangle mesh was used by Greiner and Hormann [1997].
A main drawback of both approaches is that they do not fulfill the following minimum
requirement that we should expect from any parameterization method.

Linear reproduction: Suppose that ST is contained in a plane so that its vertices
have coordinates pi = (xi, yi, 0) with respect to some appropriately chosen orthonormal
coordinate frame. Then a globally isometric (and thus optimal) parameterization can be
defined by just using the local coordinates xi = (xi, yi) as parameter points themselves,
that is, by setting ui = xi for i = 1, . . . , n + b. As the overall parameterization then is
a linear function, we say that a parameterization method has linear reproduction if it
produces such an isometric mapping in this setting.
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Figure 3.2: Notation for the construction of barycentric coordinates.

In the setting from the previous section, linear reproduction can be achieved if the
parameter points for the boundary vertices are set correctly and the values λij are chosen
such that

xi =
∑
j∈Ni

λijxj and
∑
j∈Ni

λij = 1

for all interior vertices. Values λij with both these properties are also called barycentric
coordinates of xi with respect to its neighbours xj, j ∈ Ni. If some xi has exactly three
neighbours, then the λij are uniquely defined and these barycentric coordinates inside
triangles actually have many useful applications in computer graphics (e.g., Gouraud and
Phong shading, ray-triangle-intersection), geometric modelling (e.g., triangular Bézier
patches, splines over triangulations), and many other fields (e.g., the finite element
method, terrain modelling).

For polygons with more than three vertices, the barycentric coordinates of a point
in the interior are, however, not unique anymore and there are several ways of defining
them. The most popular of them can all be described in a common framework [Floater
et al., 2006] that we shall briefly review. For any interior point xi and one of its neigh-
bours xj let rij = ‖xi − xj‖ be the length of the edge eij = [xi, xj] between the two
points and let the angles at the corners of the triangles adjacent to eij be denoted as
shown in Figure 3.2. The barycentric coordinates λij of xi with respect its neighbours
xj, j ∈ Ni can then be computed by the normalization λij = wij

/∑
k∈Ni

wik from any
of the following homogeneous coordinates wij.

• Wachspress coordinates : The earliest generalization of barycentric coordinates goes
back to Wachspress [1975] who suggested to set

wij =
cot αji + cot βij

rij
2

.

While he was mainly interested in applying these coordinates in finite element
methods, Desbrun et al. [2002] used them for parameterizing triangle meshes and
Meyer et al. [2002] for interpolating e.g. colour values inside convex polygons.
Moreover, a simple geometric construction of these coordinates was given by Ju
et al. [2005b].
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p2 = (-1,-1,0) p3 = (1,-1,0)

p4 = (1,1,0)
p5 = (-1,1,0)

p1 = (3,0,1)

Figure 3.3: Example of a triangle mesh for which only the barycentric mapping with
mean value coordinates is a bijection.

• Discrete harmonic coordinates : Another type of barycentric coordinates that stem
from finite element methods and actually arise from the standard piecewise linear
approximation to the Laplace equation are given by

wij = cot γij + cot γji.

In the context of mesh parameterization, these coordinates were first used by Eck
et al. [1995], but they have also been used to compute discrete minimal surfaces
[Pinkall and Polthier, 1993].

• Mean value coordinates : By discretizing the mean value theorem, Floater [2003a]
found yet another set of barycentric coordinates with

wij =
tan

αij

2
+ tan

βji

2

rij

.

While his main application was mesh parameterization, Hormann and Tarini [2004]
and Hormann and Floater [2006] later showed that they have many other useful
applications, in particular in computer graphics.

The beauty of all three choices is that the weights wij depend on angles and distances
only, so that they can not only be computed if xi and its neighbours are coplanar, but
more generally for any interior vertex pi ∈ VI of a triangle mesh if these angles and
distances are just taken from the triangles around pi. Of course, an alternative approach
that was introduced by Floater [1997] is to locally flatten the one-ring of triangles around
pi into the plane, e.g. with an exponential map, and then to compute the weights wij

from this planar configuration.
A triangle mesh parameterization that is computed by solving the linear systems (3.2)

with any set of barycentric coordinates λij is called a barycentric mapping and obviously
has the linear reproduction property, provided that an appropriate method for computing
the parameter points for the boundary vertices, e.g. mapping them to the least squares
plane (see Section 3.4), is used.

Despite this property, it may happen that a barycentric mapping, when constructed
for a non-planar mesh, gives an unexpected result, as the simple example in Figure 3.3
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x4 = (-1,-1)

x5 = (1,0)

x6 = (-1,1)

x7 = (-1/3,0)

x1 = (-1/5,0)

x3 = (1/3,0)

x2 = (0,0)

Figure 3.4: Example of a triangle mesh for which the linear system with Wachspress
coordinates is singular.

illustrates. If we use u2 = (−1,−1), u3 = (1,−1), u4 = (1, 1), u5 = (−1, 1) as parameter
points for the four boundary vertices and compute the barycentric weights λ12, λ13, λ14,
λ15 with the formulas described above, then we get the following positions for u1:

Wachspress coordinates: u1 = (−35.1369, 0),

discrete harmonic coordinates: u1 = (2.1138, 0),

mean value coordinates: u1 = (0.4538, 0).

That is, only the mean value coordinates yield a position for u1 that is contained in
the convex hull of the other four parameter points, and using the other coordinates will
create parameter triangles that overlap, thus violating the bijectivity property that any
parameterization should have.

The reason behind this behaviour is that the Wachspress and discrete harmonic co-
ordinates can assume negative values in certain configurations like the one in Figure 3.3,
whereas the mean values coordinates are always positive. And while overlapping trian-
gles may occur for negative weights, this never happens if all weights are positive and
the parameter points of the boundary vertices form a convex shape. The latter fact has
first been proven by Tutte [1963] for the special case of λij = 1/ηi where ηi = #Ni is
the number of pi’s neighbours, which are not true barycentric coordinates, but Floater
[1997] observed that the proof carries over to arbitrary positive weights λij. Recently,
Gortler et al. [2006] could even show that the restriction to a convex boundary can be
considerably relaxed, but this requires to solve a non-linear problem.

Another important aspect concerns the solvability of the linear systems (3.2) and it
has been shown that the matrix A is always guaranteed to be non-singular for discrete
harmonic [Pinkall and Polthier, 1993] and mean value coordinates [Floater, 1997]. For
Wachspress coordinates, however, it may happen that the sum of homogeneous coordi-
nates Wi =

∑
k∈Ni

wik is zero so that the normalized coordinates λij and thus the matrix
A are not even well-defined. In the example shown in Figure 3.4 this actually happens
for all interior vertices x1, x2, x3. But even if we skip the normalization and try to solve
the equivalent and well-defined homogeneous systems WAU = WŪ and WAV = WV̄
with W = diag(W1, . . . ,Wn) instead, we find that the matrix WA is singular in this
particular example, namely WA =

(
0 −50 0
40 0 −24
0 18 0

)
.
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3.4 The Boundary Mapping

The first step in constructing a barycentric mapping is to choose the parameter points
for the boundary vertices and the simplest way of doing it is to just project the bound-
ary vertices into the plane that fits the boundary vertices best in a least squares sense.
However, for meshes with a complex boundary, this simple procedure may lead to un-
desirable fold-overs in the boundary polygon and cannot be used. In general, there are
two issues to take into account here: (1) choosing the shape of the boundary of the
parameter domain and (2) choosing the distribution of the parameter points around the
boundary.

Choosing the shape

In many applications, it is sufficient (or even desirable) to take a rectangle or a circle
as parameter domain, with the advantage that such a convex shape guarantees the
bijectivity of the parameterization if positive barycentric coordinates like the mean value
coordinates are used to compute the parameter points for the interior vertices. The
convexity restriction may, however, generate big distortions near the boundary when
the boundary of the triangle mesh ST does not resemble a convex shape. One practical
solution to avoid such distortions is to build a “virtual” boundary, i.e., to augment the
given mesh with extra triangles around the boundary so as to construct an extended
mesh with a “nice” boundary. This approach has been successfully used by Lee et al.
[2002], and Kós and Várady [2003].

Choosing the distribution

The usual procedure mentioned in the literature is to use a simple univariate parameteri-
zation method such as chord length [Ahlberg et al., 1967] or centripetal parameterization
[Lee, 1989] for placing the parameter points either around the whole boundary, or along
each side of the boundary when working with a rectangular domain [Hormann, 2001,
Section 1.2.5].

Despite these heuristics working pretty well in some cases, having to fix the boundary
vertices may be a severe limitation in others and the next chapter studies parameteri-
zation methods that can include the position of the boundary parameter points in the
optimization process and thus yield parameterizations with less distortion.
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Chapter 4

Setting the Boundary Free

As explained in the previous section, Tutte’s theorem combined with mean value weights
provides a provably correct way of constructing a valid parameterization for a disk-like
surface. However, for some surfaces, the necessity to fix the boundary on a convex
polygon may be problematic (c.f. Figure 4.1), for the following reasons : (1) in general,
it is difficult to find a “natural” way of fixing the border on a convex polygon, and
(2) for some surfaces, the shape of the boundary is far from convex. Therefore the
obtained parameterization shows high deformations. Even if one can imagine different
ways of improving the result shown in the Figure, the so-obtained parameterization will
be probably not as good as the one shown in Figure 4.1-C, that better matches what
a tanner would expect for such a mesh. For these reasons, the next section studies
the methods that can construct parameterizations with free boundaries, that minimize
deformations in a similar way. We start by giving an intuition of how to use the notions
from differential geometry explained in Chapter 2 in our context of parameterization
with free boundaries.

4.1 Deformation analysis

To see how to apply the theoretic concepts explained in Chapter 2, we first need to grasp
their intuitive meaning.

4.1.1 The Jacobian matrix

The first derivatives of the parameterization are involved in deformation analysis, it is
then necessary to have an intuition of their geometric meaning. In physics, material point
mechanics studies the movement of an object, approximated by a point p, when forces
are applied to it. The trajectory is the curve described by the point p when t varies from
t0 to t1, where t denotes time. The function putting a given time t in correspondence
with the position p(t) = {x(t), y(t), z(t)} of the point p is a parameterization of the
trajectory, i.e., a parameterization of a curve. It is well known that the vector of the
derivatives v(t) = ∂p/∂t = {∂x/∂t, ∂y/∂t, ∂z/∂t} corresponds to the speed of p at
time t.
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Figure 4.1: A: a mesh cut in a way that makes it homeomorphic to a disk, using the
seamster algorithm [Sheffer and Hart, 2002]; B: Tutte-Floater parameterization obtained
by fixing the border on a square; C: parameterization obtained with a free-boundary
parameterization [Sheffer and de Sturler, 2001].
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Figure 4.2: Elementary displacements from a point (u, v) of Ω along the u and the v axes
are transformed into the tangent vectors to the iso-u and iso-v curves passing through
the point f(u, v)
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As shown in Figure 4.2, we consider now a function f : (u, v) 7→ (x, y, z), putting a
subspace Ω of R2 in one-to-one correspondence with a surface S of R3. The scalars (u, v)
are the coordinates in parameter space. In the case of a curve parameterization, the
curve is described by a single parameter t. In contrast, in our case, we consider a surface
parameterization f(u, v) = {x(u, v), y(u, v), z(u, v)}, and there are two parameters, u
and v. Therefore, at a given point (u0, v0) of the parameter space Ω, there are two
“speed” vectors to consider: fu = (∂f/∂u)(u0, v0) and fv = (∂f/∂v)(u0, v0). It is easy to
check that fu is the “speed” vector of the curve Cu : t 7→ f(u0 + t, v0) at X (u0, v0) and
that fv is the “speed” vector of the curve Cv : t 7→ f(u0, v0 + t). The curve Cu (resp.
Cv) is the iso-u (resp. the iso-v) curve passing through f(u0, v0), i.e. the image through
f of the line of equation u = u0 (resp. v = v0).

4.1.2 The 1st fundamental form and the anisotropy ellipse

At that point, one may think that the information provided by the two vectors fu(u0, v0)
and fv(u0, v0) is not sufficient to characterize the distortions between Ω and S in the
neighborhood of (u0, v0) and f(u0, v0). In fact, they can be used to compute how an
arbitrary vector w = (a, b) in parameter space is transformed into a vector w′ in the
neighborhood of (u0, v0). In other words, we want to compute the “speed” vector w′ =
∂f(u0 + t.a, v0 + t.b)/∂t of the curve corresponding to the image of the straight line
(u, v) = (u0, v0) + t.w. The vector w′, i.e. the tangent to the curve Cw, can be simply
computed by applying the chain rule, and one can check that it can be computed from
the derivatives of f as follows : w′ = afu(u0, v0) + bfv(u0, v0). The vector w′ is referred
to as the directional derivative of f at (u0, v0) relative to the direction w.

In matrix form, w′ is obtained by w′ = J(u0, v0)w, where J(u0, v0) is the matrix of
all the partial derivatives of f :

J(u0, v0) =


∂x
∂u

(u0, v0)
∂x
∂v

(u0, v0)

∂y
∂u

(u0, v0)
∂y
∂v

(u0, v0)

∂z
∂u

(u0, v0)
∂z
∂v

(u0, v0)

 =

[
fu(u0, v0)

... fv(u0, v0)

]
(4.1)

As already said in Chapter 2, the matrix J(u0, v0) is referred to as the Jacobian
matrix of f at (u0, v0).

The notion of directional derivative makes it possible to know what an elementary
displacement w from a point (u0, v0) in parameter space becomes when it is transformed
by the function f . The Jacobian matrix helps also computing dot products and vector
norms onto the surface S. This can be done using the matrix JTJ, referred to as the 1st

fundamental form of f , also described in the differential geometry section. This matrix
is denoted by I, and defined by :

I(u0, v0) = JTJ =

 fu · fu fu · fv

fv · fu fv · fv

 (4.2)
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Figure 4.3: Anisotropy: an elementary circle is transformed into an elementary ellipse.

The 1st fundamental form I(u0, v0) is also referred to as the metric tensor of f ,
since it makes it possible to measure how distances and angles are transformed in the
neighborhood of (u0, v0). The squared norm of the image w′ of a vector w is given
by ||w′||2 = wT Iw, and the dot product w′T

1 w′
2 = wT

1 Iw2 determines how the angle
between w1 and w2 is transformed. The next section gives a geometric interpretation of
the 1st fundamental form and its eigenvalues.

The previous section has studied how an elementary displacement from a parameter-
space location (u0, v0) is transformed through the parameterization f . As shown in
Figure 4.3, our goal is now to determine what an elementary circle becomes.

Let us consider the two eigenvalues λ1, λ2 of G, and two associated unit eigenvectors
w1,w2. Note that since I is symmetric, w1 and w2 are orthogonal. An arbitrary unit
vector w can be written as w = cos(θ)w1 + sin(θ)w2. The squared norm of w′ = Jw is
then given by:

||w′||2 = wT Iw
= (cos(θ)w1 + sin(θ)w2)

T I(cos(θ).w1 + sin(θ).w2)
= cos2(θ)||w1||2λ1 + sin2(θ)||w1||2λ2+

sin(θ) cos(θ)(λ1w
T
2 w1 + λ2w

T
1 w2)

= cos2(θ).λ1 + sin2(θ).λ2

(4.3)

In Equation 4.3, the cross terms wT
1 w2 and wT

2 w1 vanish since w1 and w2 are
orthogonal. Let us see now what are the extrema of ||w′||2 in function of θ.

∂||w′(θ)||2
∂θ

= 2 sin(θ) cos(θ)(λ2 − λ1)
= sin(2θ)(λ2 − λ1)

(4.4)

The extrema of ||w′(θ)||2 are then obtained for θ ∈ {0, π/2, π, 3π/2}, i.e. for w = w1

or w = w2. Therefore, the maximum and minimum values of ||w′(θ)||2 are λ1 and λ2,
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and:

• The axes of the anisotropy ellipse are Jw1 and Jw2;

• The lengths of the axes are
√

λ1 and
√

λ2.

Note: as mentioned in Chapter 2, the lengths of the axes
√

λ1 and
√

λ2 also corre-
spond to the singular values of the matrix J. A geometric interpretation of the SVD is
also explained in that chapter. We remind that the singular value decomposition (SVD)
of a matrix J writes:

J = UΣVT = U


σ1 0

0 σ2

0 0

VT

where U : 3× 3 and V : 2× 2 are such that their column vectors form an orthonormal
basis (we also say that they are unit matrices), and Σ is a matrix such that only its
diagonal elementsσ1, σ2 are non-zero. The scalars σ1, σ2 are called the singular values of
J . In our case, by substituting the Jacobian matrix J with its SVD, we obtain:

I = JTJ

= (UΣVT )T (UΣVT )

= VΣTUTUΣVT = VΣTΣVT

= V

[
σ2

1 0
0 σ2

2

]
VT

Since U is a unit matrix, the central term UTU of the third line is equal to the identity
matrix and vanishes. We then obtain SVD of the matrix I, that is also a diagonalization
of I. By unicity of the SVD, we deduce the relation between the eigenvalues λ1, λ2 of G
and the singular values σ1, σ2 of J : λ1 = σ2

1 and λ2 = σ2
2.

We can now give the expression of the lengths of the anisotropy ellipse σ1 and σ2. We
first recall the expression of the Jacobian matrix as a function of the gradient vectors:

I = JTJ =

(
E F
F G

)
with


E = f 2

u

F = fu · fv

G = f 2
v

(4.5)

The lengths of the axis of the anisotropy ellipse correspond to the eigenvalues of
I. Their expression can be found by computing the square roots of the zeros of the
characteristic polynomial |I− σId| (that is a second order equation in σ) :

σ1 =
√

1/2(E + G) +
√

(E −G)2 + 4F 2

σ2 =
√

1/2(E + G)−
√

(E −G)2 + 4F 2
(4.6)
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Figure 4.4: Local X, Y basis in a triangle.

Deformation analysis for triangulated surfaces

Deformation analysis, introduced in the previous section, involves the computation of
the gradients of the parameterization as a function of the parameters u and v. In the case
of a triangulated surface, the parameterization is a piecewise linear function. Therefore,
the gradients are constant in each triangle.

Before studying the computation of these gradients, we need to mention that our
setting is slightly different from the previous section. In our case, as previously men-
tioned, the 3D surface is given, and our goal is to construct the parameterization. In this
setting, it seems more natural to characterize the inverse of the parameterization, i.e.
the function that goes from the 3D surface (known) to the parametric space (unknown).
This function is also piecewise linear. To port deformation analysis to this setting, it is
possible to provide each triangle with an orthonormal basis X, Y , as shown in Figure 4.4
(and we can use one of the vertices pi of the triangle as the origin). In this basis, we
can study the inverse of the parameterization, that is to say the function that maps a
point (X, Y ) of the triangle to a point (u, v) in parameter space. This function writes :{

u(X, Y ) = λ1ui + λ2uj + λ3uk

v(X, Y ) = λ1vi + λ2vj + λ3vk

where (λ1, λ2, λ3) denote the barycentric coordinates at the point (x, y) in the triangle,
computed as before :λi

λj

λk

 =
1

2|T |X,Y

Yj − Yk Xk −Xj XjYk −XkYj

Yk − Yi Xi −Xk XkYi −XiYk

Yi − Yj Xj −Xi XiYj −XjYi

X
Y
1


where 2|T |X,Y = (XiYj − YiXj) + (XjYk − YjXk) + (XkYi − YkXi) denotes the double
area of the triangle (in 3D space this time).
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Figure 4.5: Iso-u,v curves and associated gradients.

By substituting the values of λ1, λ2 and λ3 in u = λ1ui + λ2uj + λ3uk (resp. v), we
obtain:(

∂u/∂X

∂u/∂Y

)
= MT

ui

uj

uk

 =
1

2|T |X,Y

(
Yj − Yk Yk − Yi Yi − Yj

Xk −Xj Xi −Xk Xj −Xi

)ui

uj

uk

 (4.7)

where the matrix MT solely depends on the geometry of the triangle T .
As shown in Figure 4.5, these gradients are different (but strongly related with) the

gradients of the inverse function, computed in the previous section. The gradient of u
( resp. v) intersects the iso-us (resp. the iso-vs) with a right angle (instead of being
tangent to them), and its norm is the inverse of the one computed in the previous section.

These gradients can then be used to deduce the expression of the Jacobian matrix
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JT , as follows :

JT =

(
∂u
∂X

∂v
∂X

∂u
∂Y

∂v
∂Y

)

= 1
2|T |x,y

(
0 −1
1 0

)(
X3 −X2 X1 −X3 X2 −X1

Y3 − Y2 Y1 − Y3 Y2 − Y1

)u1 v1

u2 v2

u3 v3



= 1
2|T |x,y

(
0 −1
1 0

)(
X1 X2 X3

Y1 Y2 Y3

) 0 1 −1
−1 0 1

1 −1 0

u1 v1

u2 v2

u3 v3


(4.8)

The second line of this equation shows how the Jacobian matrix combines the vec-
tors of the edges of the triangle with the (u, v) coordinates. The third line is a more
symmetric expression, that uses the coordinates of the points directly. The square ma-
trix swaps the coordinates of the triangle edges shows an interesting similarity with the
imaginary number i (in fact, this is a representation of the imaginary number i). We
will elaborate more on the links with complex analysis in Section 4.3 that deals with
conformal methods.

4.2 Parameterization methods based on deformation analysis

This section reviews these methods, using the formalism introduced in Chapter 2 and
Section 4.1. However, before going further, we need to warn the reader about a possible
source of confusion :

• half of the methods study the function that goes from the surface to the parametric
space (as in the previous Section). This is justified by the fact that the (u, v)
coordinates are unknown. Therefore, it is more natural to go from the known
world (the surface) to the unknown world (the parameter space);

• the other half of the methods use the inverse convention, and study the function
that goes from parameter space to the surface (as in Section 4.1). This is justi-
fied by the fact that it makes the formalism compatible with classical differential
geometry books [do Carmo, 1976] that use this convention.

Since both conventions are justified, both are used by different authors. However,
as will be shown, deformation analysis for one convention can be easily deduced from
the other one. Therefore, except the risk of confusion, this does not introduce much
difficulty to understand these methods. So far, the notations we used in this section are
related with the function that maps (X, Y ) local coordinates in the triangle to (u, v)
coordinates in parameter space Ω.
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Figure 4.6: Left: to avoid triangle flips, each vertex p is constrained to remain in the
kernel of the polygon defined by its neighbors qi; Right: the kernel of a polygon (white)
is defined by the intersection of the half-planes defined by the support lines of its edges
(dashed).

Notations for the convention (u, v) 7→ (x, y, z)

The symbols J′, I′, σ′1, σ
′
2 are related with the function that goes from the parametric

space to the surface, and denote respectively the Jacobian matrix, the first fundamental
form, and the lengths of the two axes of the anisotropy ellipse.

We now study the relations between these values and those associated with the inverse
function. The Jacobian matrix of the inverse of a function f is equal to the inverse of
the Jacobian matrix of f−1. Therefore, we have J′ = J−1.

Moreover, it is easy to check that if the SVD of J writes UΣVT , with Σ = diag(σ1, σ2)
and with U,V two unit matrices, i.e. UTU = Id and VTV = Id, then the SVD of J′

writes VΣ−1UT (one can check that the product of the two matrices gives the identity
matrix). Therefore, the lengths of the smallest and largest axis of the anisotropy ellipse
of the inverse function are given by :

σ′1 =
1

σ2

; σ′2 =
1

σ1

Armed with these definitions, we can now proceed to review several methods based
on deformation analysis, and express them in a common formalism. As explained before,
we need to take care of identifying whether the surface → parametric-space function or
parametric-space→ surface function is used. Before evoking these methods, we give two
more precisions :

• to avoid triangle flips, some of the methods constrain each vertex p to remain in
the kernel of the polygon defined by its neighbors qi. This notion is illustrated in
Figure 4.6. To compute the kernel of a polygon, it is for instance possible to apply
Sutherland and Hogdman’s re-entrant polygon clipping algorithm to the polygon
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Figure 4.7: Parameterization methods based on deformation analysis often need to min-
imize non-linear objective functions. To accelerate the computations, these methods
often use a multiresolution approach, based on Hoppe et.al’s Progressive Mesh data
structure.

(clipped by itself). The algorithm is described in most general computer graphics
books [Foley et al., 1995];

• since they are based on the eigenvalues of the first fundamental form, the objec-
tive functions involved in deformation analysis are often non-linear, and therefore
difficult to minimize in an efficient way. To accelerate the computations, a com-
monly used technique consists in representing the surface in a multi-resolution
manner, based on Hoppe’s Progressive Mesh data structure [Hoppe, 1996]. The
algorithm starts by optimizing a simplified version of the object, then introduces
the additional vertices and optimizes them by iterative refinements.

Now that we have seen the general notions related with deformation analysis and
the particular aspects that concern the optimization of objective functions involved
in deformation analysis, we can review several classical methods that belong to this
category.

4.2.1 Green-Lagrange deformation tensor

Historically, to minimize the deformations of a parameterization, one of the first methods
was developed by Maillot et al. [1993]. The main idea behind their approach consists
in minimizing a matrix norm of the Green-Lagrange deformation tensor. This notion
comes from mechanics, and measures the deformation of a material. Intuitively, we
know that if the metric tensor G is equal to the identity matrix, then we have an
isometric parameterization. The Green-Lagrange deformation tensor is given by G− Id,
and measures the “non-isometry” of the parameterization. Maillot et. al minimize the
Froebenius norm of this matrix, given by :

‖I− Id‖2F = (λ1 − 1)2 + (λ2 − 1)2

where λ1 and λ2 denote the eigenvalues of the first fundamental form I.

34



4.2.2 MIPS

Hormann and Greiner’s MIPS (Mostly Isometric Parameterization of Surfaces) method
[Hormann and Greiner, 2000a] was to our knowledge the first mesh parameterization
method that computes a natural boundary. This method is based on the minimization of
the ratio between the two lengths of the axes of the anisotropy ellipse. This corresponds
to the 2-norm of the Jacobian matrix :

K2(JT ) = ‖JT‖2‖J−1
T ‖2 = σ1/σ2

Since minimizing this energy is a difficult numerical problems, Hormann and Greiner
have replaced the two norm ‖.‖2 by the Froebenius ‖.‖F , that is to say the square root
of the sum of the squared singular values :

KF (JT ) = ‖JT‖F‖J−1
T ‖F

=
√

σ2
1 + σ2

2

√(
1
σ1

)2

+
(

1
σ2

)2

=
σ2
1+σ2

2

σ1σ2
= trace(IT )

det(JT )

As can be seen, fortunate cancelations of terms yield a simple expression at the end.
The final expression corresponds to the ratio between the trace of the metric tensor
and the determinant of the Jacobian matrix. As indicated in the original article, this
value can also be interpreted as the Dirichlet energy per parameter-space area: the term
trace(I) corresponds to the Dirichlet energy, and the Jacobian det(J) to the ratio between
triangle’s area in 3D and in parameter space.

Interestingly, as explained by the authors, KF (JT ) also writes :

KF (JT ) = σ1/σ2 + σ2/σ1 = K2(JT ) + K2(J
−1
T )

This alternative expression reveals that the anisotropy in both directions (from Ω to S
and from S to Ω) is taken into account.

4.2.3 Stretch minimization

Motivated by texture mapping applications, Sander et al. [2001] studied the way a signal
stored in parameter space is deformed when it is texture-mapped onto the surface (by
applying the parameterization). For this reason, their formalism uses the inverse func-
tion, that maps the parametric space onto the surface. Therefore, we use the notations
J ′, G′, σ′1, σ′2, as explained at the beginning of the section.

A possible way of characterizing the deformations of a texture is to consider a point
and a direction in parameter space and analyze how the texture is deformed along that
direction. Sander et. al called this value the “stretch”. This exactly corresponds to the
notion of directional derivative, that we introduced in Section 4.1. For a triangle T , they
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Figure 4.8: Some results computed by stretch L2 minimization (parameterized models
courtesy of Pedro Sander and Alla Sheffer).

defined two energies, that correspond to the average value of the stretch for all directions
(stretch L2(T )), and to the maximum stretch (stretch L∞(T )) :

L2(T ) =
√

(σ′21 + σ′22 )/2 =
√

((1/σ1)2 + (1/σ2)2) /2
L∞(T ) = σ′2 = 1/σ1

where the expression of σ′1 = 1/σ2 and σ′2 = 1/σ1 are given at the beginning of the
section. The local energies of each triangle T are combined into a global energy L2(S)
and L∞(S) defined as follows :

L2(S) =
√P

T |T |L2(T )
P

T |T |

L∞(S) = maxT L∞(T )

Figure 4.8 shows some results computed with this approach. This formalism is par-
ticularly well suited to texture mapping applications, since it minimizes the deformations
that are responsible of the visual artifacts that this type of application wants to avoid.
Moreover, a simple modification of this method allows the contents of the texture to be
taken into account, and therefore to define a signal-adapted parameterization [Sander
et al., 2002].

4.2.4 Symmetric energy

A similar method was proposed in [Sorkine et al., 2002]. Based on the remark that
shrinking and stretching should be treated the same, they replace the L2 and L∞ energy
with the following one, more symmetric with this respect:

DT = max(σ′2, 1/σ
′
1) = max(1/σ1, σ2)
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4.2.5 Combined energy

To introduce more flexibility in these methods, Degener et al. [2003] proposed to use
a combined energy, with a term σ′1σ

′
2 that penalizes area deformations1, and a term

σ′1/σ
′
2 that penalizes angular deformations. To facilitate the numerical optimization of

the objective function, each term x is replaced by the expression x + 1/x, which gives :

Ecombined = Eangle × (Earea)
θ

with :

Earea = σ′1σ
′
2 + 1

σ′1σ′2
= det(J′T ) + 1

det(J′T )

Eangle =
σ′1
σ′2

+
σ′2
σ′1

= σ2

σ1
+ σ1

σ2
= EMIPS

where the parameter θ makes it possible to choose the relative importance of both terms.
One can notice that the angular term corresponds to the energy minimized by the MIPS
method (see above).

4.3 Conformal methods

Conformal methods are related with the formalism of complex analysis. The involved
conformality condition defines a criterion with sufficient “rigidity” to offer good extrap-
olation capabilities, that can compute natural boundaries. The reader interested with
this formalism may read the excellent book by Needham [1997].

As seen in this section, deformation analysis, introduced in Section 4.1, plays a central
role in the definition of (non-distorted) parameterization methods. We now focus on a
particular family of methods, for which the anisotropy ellipse is a circle for all point of
the surface. As shown in Figure 4.9, this also means that the two gradient vectors fu

and fv are orthogonal and have the same norm. The condition can also be written as
fv = n × fu, where n denotes the normal vector. Interestingly, if a parameterization
is conformal, this is also the case of the inverse function (since the Jacobian matrix of
the inverse is equal to the inverse of the Jacobian matrix). The relation can also be
seen in Figure 4.5, if the iso-u,v curves are orthogonal, it is also the case of their normal
vectors. Finally, conformality also means that the Jacobian matrix is composed of a
rotation and a scaling (in other words, a similarity). Therefore, conformal applications
locally correspond to similarities. In terms of differential geometry (Chapter 2), this
means that the lengths of the anisotropy ellipse are the same (σ1 = σ2). We now review
different methods that compute a conformal parameterization.

1This corresponds to the Jacobian of the parameterization, i.e. the determinant of the Jacobian
matrix, that defines the differential element for areas.
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Figure 4.9: A conformal parameterization transforms an elementary circle into an ele-
mentary circle.
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Figure 4.10: In a triangle provided with a local (X, Y ) basis, it is easy to express the
condition that characterizes conformal maps.
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LSCM

In contrast with the exposition of the initial paper [Lévy et al., 2002], we will present
the method in terms of simple geometric relations between the gradients. We will then
elaborate with the complex analysis formalism, and establish the relation with other
methods.

The LSCM method (Least Squares Conformal Maps) simply expresses the confor-
mality condition of the functions that maps the surface to parameter space. We now
consider one of the triangles of the surface, provided with an orthonormal basis (X, Y )
of its support plane (c.f. Figure 4.10). In this context, conformality writes :

∇v = rot90(∇u) =

(
0 −1
1 0

)
∇u (4.9)

where rot90 denotes the anticlockwise rotation of 90 degrees.
Using the expression of the gradient in a triangle (derived at the end of Section 4.1.2),

Equation 4.9, that characterizes piecewise linear conformal maps rewrites :

MT

vi

vj

vk

− (0 −1
1 0

)
MT

ui

uj

uk

 =

(
0
0

)

where the matrix MT is given by Equation 4.7.
In the continuous setting, Riemann proved that any surface admits a conformal

parameterization. However, in our specific case of piecewise linear functions, only de-
velopable surfaces admit a conformal parameterization. For a general (non-developable)
surface, we minimize an energy ELSCM that corresponds to the “non-conformality” of
the application, and called the discrete conformal energy :

ELSCM =
∑

T=(i,j,k)

|T |

∥∥∥∥∥∥MT

vi

vj

vk

− (0 −1
1 0

)
MT

ui

uj

uk

∥∥∥∥∥∥
2

(4.10)

Note that conformality is invariant through similarities applied in parameter space.
For this reason, the quadratic form ELSCM is not definite positive, and its matrix is
singular. However, it is possible to define the 4 degrees of freedom of the similarity
by removing two vertices from the set of variables, using the technique presented in
Section 10.4.3. The so-defined quadratic form is provably positive definite.

We have considered conformal maps from the point of view of the gradients. In the
next section, we exhibit relations between conformal maps and harmonic functions. This
also shows some connections with Floater’s barycentric mapping method and with its
more recent generalizations.
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Conformal maps and harmonic maps

Conformal maps play a particular role in complex analysis and Riemannian geometry.
The following system of equations characterizes conformal maps :

∂v
∂x

= −∂u
∂y

∂v
∂y

= ∂u
∂x

This system of equations is known as Cauchy-Riemann equations They play a central
role in complex analysis, since they characterize differentiable complex functions (also
called analytic functions). We focus on the complex function U(X) = u(X) + iv(X)
with X = x + iy. It is then possible to prove that the derivative U ′(X) of U at point X
defined by :

U ′(X) = lim
A→0

U(X)− U(A)

X − A

exists if and only if Cauchy-Riemann equations are satisfied.
Another way of understanding this relation is given by the order 1 Taylor expansion.

In the case of a function f from R to R, the Taylor expansion of f writes f(x0 + a) '
f(x0) + f ′(x0)a. This realizes a local linear approximation of the function f around the
point x0.

If we now consider a complex function U(X), when the complex derivative is defined,
the Taylor expansion writes U(X0 +A) ' U(X0)+U ′(X0)A. If we consider the complex
function U as a 2D geometric transform of the plane, and by writing U ′(X0) = Reiθ in
polar form, we get U(X0 + A) ' U(X0) + ReiθA. In other words, differentiable complex
functions behave locally like a similarity of the plane (composed of a translation of vector
U(X0), a rotation of angle θ and a scaling of factor R). This gives another explanation
for the Cauchy-Riemann equations : the rotation and the scaling applied to the two
gradient vectors need to match.

Note that with complex numbers, the energy minimized by LSCM takes a simple
form, that reveals the symmetric roles played by the coordinates (Xi, Yi) on the surface
and the coordinates (ui, vi) in parameter-space :

ELSCM =
1

2

∣∣∣∣∣∣(P1 P2 P3

) 0 1 −1
−1 0 1

1 −1 0

U1

U2

U3

∣∣∣∣∣∣
2

where U1 = (u1 + iv1) (resp. U2, U3) and where P1 = (X1 + iY1) (resp. P2, P3).
Another interesting property of complex differentiable functions is that their order-1

differentiability makes them differentiable at any order. We can then use the Cauchy-
Riemann equations to compute the order 2 derivatives of u and v.

This establishes an interesting relation with the Laplacian operator ∆ :
∂2u
∂x2 = ∂2v

∂x∂y

∂2u
∂y2 = − ∂2v

∂x∂y
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or :
∆u = ∂2u

∂x2 + ∂2u
∂y2 = 0

∆v = ∂2v
∂x2 + ∂2v

∂y2 = 0

In other words, the real part and the imaginary part of a conformal map are two
harmonic functions (i.e. two functions with zero Laplacian). This is the point of view
adopted by Desbrun et al. [2002] to develop their conformal parameterization method,
nearly equivalent to LSCM. Thus, they compute two harmonic functions while letting
the border evolve. On the border, a set of constraints enforce the conformality of the
parameterization, and introduce a coupling term between the u’s and the v’s.

Another way of considering both approaches, mentioned by Pinkall and Polthier
[1993] and probably at the origin of Desbrun, Meyer, and Alliez’s intuition, is given
by Plateau’s problem [Plateau, 1873; Meeks, 1981]. Given a closed curve, this problem
concerns the existence of a surface with minimum area, such that its border matches the
closed curve. To minimize the area of a surface, Douglas [1931] and Radó [1930], and
later Courant [1950] considered Dirichlet’s energy (i.e. the integral of the squared norm
of the gradients), easier to manipulate. A discretization of this energy was proposed
by Pinkall and Polthier [1993], with the aim of giving a practical solution to Plateau’s
problem in the discrete case. Dirichlet’s energy differs from the area of the surface. The
difference is a term that depends on the parameterization, called the conformal energy.
The conformal energy is equal to zero if the parameterization is conformal. The relation
between these three quantities is explained below :∫

S

det(J)ds︸ ︷︷ ︸
area of the surface

=
1

2

∫
S

‖fu‖2 + ‖fv‖2ds︸ ︷︷ ︸
Dirichlet’s energy

− 1

2

∫
S

‖fv − rot90(fuX)‖2︸ ︷︷ ︸
conformal energy

This relation is easy to prove, by expanding the integrated terms in a local basis
X, Y of the tangent plane:
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)∥∥∥∥∥
2


︸ ︷︷ ︸
‖fv−rot90(fu)‖2

Therefore, LSCM minimizes the conformal energy, and Desbrun et.al ’s method minimize
Dirichlet’s energy. Since the difference between these two quantities corresponds to the
(constant) area of the surface, both methods are equivalent.

All the methods mentioned above are based on relations between the gradients, the
Jacobian or the first fundamental form of the parameterization. For this reason, they
can be qualified as analytical methods. In the next chapter, we focus on geometrical
methods, that consider the shape of the triangles (and more specifically their angles).
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Chapter 5

Angle-Space Methods

Instead of defining a planar parameterization in terms of vertex coordinates, both the
ABF/ABF++ method [Sheffer and de Sturler, 2000, 2001; Sheffer et al., 2005] and the
circle-patterns algorithm [Kharevych et al., 2006] define it in terms of the angles of
the planar triangles. Figure 7.3 provides a comparison between angle-space and direct
conformal methods. As demonstrated, angle-space methods introduce significantly less
stretch into the parameterization on models that have regions of high Gaussian curvature.

The ABF method (Angle Based Flattening) [Sheffer and de Sturler, 2000, 2001]
is based on the following observation: a planar triangulation is uniquely defined by
the corner angles of its triangles (modulo a similarity transformation). Based on this
observation the authors reformulate the parameterization problem – finding (ui, vi) co-
ordinates – in terms of angles, that is to say finding the angles αt

k, where αt
i denotes the

angle at the corner of triangle t incident to vertex k.
To ensure that the 2D angles define a valid triangulation, a set of constraints needs

to be satisfied.

• Triangle validity (for each triangle t):

∀t ∈ T, αt
1 + αt

2 + αt
3 − π = 0; (5.1)

• Planarity (for each internal vertex v):

∀v ∈ Vint,
∑

(t,k)∈v∗

αt
k − 2π = 0, (5.2)

where Vint denotes the set of internal vertices, and where v∗ denotes the set of
angles incident to vertex v.

• Positivity : αt
k > 0 for all angles. We note that this constraint can be ignored in

most practical setups [Sheffer et al., 2005], simplifying the solution process.

• Reconstruction (for each internal vertex) - this constraints ensures that edges
shared by pairs of triangles has the same length:

∀v ∈ Vint,
∏

(t,k)∈v∗

sin αt
k⊕1 −

∏
(t,k)∈v∗

sin αt
k	1 = 0. (5.3)
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The indices k ⊕ 1 and k 	 1 denote the next and previous angle in the triangle.
Intuitively, note that the product sin αt

k⊕1 sin αt
k	1 corresponds to the product of

the ratio between the lengths of two consecutive edges around vertex k. If they do
not match, it is the possible to “turn around” vertex k without “landing” on the
starting point.

They search for angles that are as close as possible to the original 3D mesh angles
βt

k and which satisfy those constraints.
The constrained numerical optimization problem is solved using the Lagrange mul-

tipliers method (see section 10.6). The stationary point of the Lagrangian is computed
using Newton’s method (see Section 10.5). Each step requires to solve a linear system
of size 2nv + 4nf , where nv denotes the number of interior mesh vertices and nf the
number of facets. They then convert the solution angles into actual (u, v) vertex coor-
dinates using a propagation procedure. The resulting parameterizations are guaranteed
to have no flipped triangles, i.e. be locally bijective, but can contain global overlaps.
The authors provided a mechanism for resolving such overlaps, but it has no guarantees
of convergence. The original ABF method is relatively slow and suffers from stability
problems in the angle-to-uv conversion stage for large meshes.

ABF was augmented to yield ABF++ [Sheffer et al., 2005], a technique addressing
both problems. ABF++ introduces a stable angle-to-uv conversion using the LSCM
method to obtain (u, v) coordinates from the set of angles. Sheffer et al. [2005] also
drastically speeds up the solution by introducing both direct and hierarchical solution
approaches. For the direct solver they switch from Newton to Gauss-Newton solution
setup, simplifying the structure of the linear system solved at each step. They then use
the structure of the Hessian matrix to solve the linear system without explicitly inverting
the entire Hessian. Thus they manage to reduce the size of the explicitly inverted matrix
at each step by a factor of five to about 2nv (note that on a manifold mesh 2nv ≈ nf).
This is what one may expect for a parameterization problem since this corresponds
to the number of degrees of freedom. We make an interesting observation about the
convergence behaviour of ABF+ throughout the Gauss-Newton process. While it takes
five to ten iterations to reduce the minimization error (the gradient of the Lagrangian)
below 1e−6, practically all the changes from iteration two and on occur in the Lagrange
multipliers. Even after one iteration (Figure 5.1(a)) the computed angles are very close
to the final ones and they completely converge within a couple of iterations (Figure 5.1).

Several modifications of the formulation were proposed over the last few years. For
instance, Zayer et al. [2003] introduced additional constraints on the angles enforcing
the parameter domain to have convex boundaries, thus guaranteeing global bijectivity.

Kharevych et al. [2006] use a circle patterns approach where each circle corresponds
to a mesh face. In contrast to classical circle packing, they use intersecting circles, with
prescribed intersection angles θe (Figure 5.2). Given these angles, the circle radii follow
as the unique minimizer of a convex energy. The method first computes the intersection
angles using non-linear constrained optimization and then finds the circle radii using
unconstrained minimization. To find the intersection angles it first computes a set of
feasible triangle angles αk

ij which are close to the 3D angles βk
ij and satisfy the following
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(a) (b) (c) )

Figure 5.1: Convergence of ABF++: (a) parameterization result after one iteration
(error metrics cow: Lstretch

2 = 1.10634, Lshear
2 = 4.69e−4, AngD = 4.19e−4 camel

Lstretch
2 = 1.09616, Lshear

2 = 5.21e − 3, AngD = 5.09e−3 ); (b) two iterations (er-
ror metrics cow: Lstretch

2 = 1.10641, Lshear
2 = 4.64e−4, AngD = 3.81e−4 camel

Lstretch
2 = 1.09645, Lshear

2 = 5.15e − 3, AngD = 5.04e−3 (d) ten iterations (er-
ror metrics cow: Lstretch

2 = 1.10638, Lshear
2 = 4.64e−4, AngD = 3.81e−4 camel

Lstretch
2 = 1.09639, Lshear

2 = 5.15e−3, AngD = 5.04e−3 ). The formulas for the stretch,
shear and angular distortion are taken from [Sheffer et al., 2005].
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Figure 5.2: Circle patterns notations.

constraints:

• Triangle validity (for each triangle t):

∀tijk ∈ T, αt
ij + αt

ik + αt
kj − π = 0; (5.4)

• Planarity (for each internal vertex v):

∀v ∈ Vint,
∑

(t,ij)∈v∗

αt
ij − 2π = 0, (5.5)

where Vint denotes the set of internal vertices, and where v∗ denotes the set of
angles incident to vertex v.

• Positivity : αt
ij > 0 for all angles.

• Local Delaunay property (for each edge eij):

∀eij ∈ E, αk
ij + αl

ij < π (5.6)

We note that three of these constraints are similar to those imposed by the ABF
setup, with the non-linear reconstruction constraint on interior vertices replaced by the
inequality local Delaunay constraint per edge. The intersection angles are computed
from the feasible triangle angles using a simple formula. Since the solution for the
intersection angles is conformal only for a Delaunay triangulation, the authors employ a
pre-processing stage that involves "intrinsic" Delaunay triangulation. At the final stage
of the method, the computed radii are converted to actual uv-coordinates. The method
supports equality and inequality constraints on the angles along the boundary of the
planar parameter domain. Similar to ABF, the parameterization is locally bijective,
but can contain global overlaps. The amount of distortion introduced by the method is
comparable with that of ABF/ABF++ techniques.

Kharevych et al. propose an extension of the method to global parameterization of
meshes by introducing cone singularities. They observe that in angle space formulation
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Figure 5.3: Fixed and free-boundary parameterizations computed using circle patterns.

the only difference between parameterizing the mesh boundary and its interior mesh is
the constraints imposed on the interior vertices which are not imposed on boundary ones,
and that it is possible to define a global parameterization by specifying an unconnected
subset of mesh vertices as boundary vertices. Thus they first compute a solution in
angle space with a set of cone singularity vertices specified by the user as boundary. For
planar parameterization, to perform the angle-to-uv conversion they later compute edge
paths between these vertices. The obtained parameterization is globally continuous up
to translation and rotation, everywhere except at the cone singularities. The proposed
approach can be directly applied to other angle-space methods such as ABF/ABF++.
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Figure 5.4: Global parameterization with cone singularities.
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Chapter 6

Segmentation and Constraints1

For practical purposes planar mesh parameterization has to address two additional chal-
lenges: segmenting closed or high genus meshes to enable planar embedding and enforc-
ing specific point-to-point correspondences during parameterization.

6.1 Segmentation

Planar parameterization is only applicable to surfaces with disk topology. Hence, closed
surfaces and surfaces with genus greater than zero have to be cut prior to planar pa-
rameterization. As previously noted, greater surface complexity usually increases para-
meterization distortion, independent of the parameterization technique used. To allow
parameterizations with low distortion, the surfaces must be cut to reduce the complexity.
Since cuts introduce discontinuities into the parameterization, a delicate balance between
the conflicting goals of small distortion and short cuts has to be achieved. It is possible
to use constrained parameterization techniques to reduce cross-cut discontinuities.

Cutting and chart generation are most commonly used when computing parame-
terizations for mapping of textures and other signals onto the surface. They are also
used for applications such as compression and remeshing. The techniques for cutting
surfaces can be roughly divided into two categories: segmentation techniques which par-
tition the surface into multiple charts (Section 6.1.1), and seam generation techniques
which introduce cuts into the surface but keep it as a single chart (Section 6). Multiple
charts created by segmentation typically have longer boundaries than those created by
seam cutting. However, they can often be more efficiently packed into a compact planar
domain.

6.1.1 Multi-Chart Segmentations

Depending on the application, mesh segmentation techniques use different criteria for
creating charts. For parameterization, surfaces are broken into several charts such that
the parametric distortion when parameterizing each chart is sufficiently low, while the
number of charts remains small and their boundaries are kept as short as possible. Since

1This chapter is taken from [Sheffer et al., 2006] with minor changes.
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Figure 6.1: Multi-chart segmentations (a) Isocharts [Zhou et al., 2004] – 13 charts; (b)
[Lévy et al., 2002] – 44 charts; (c) D-charts [Julius et al., 2005] – 12 charts; (d) multi-
chart geometry images [Sander et al., 2003] – 15 charts; and (e) [Zhang et al., 2005] –
24 charts.
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planes are developable by definition, one possible approach is to segment the surface
into nearly planar charts [Maillot et al., 1993; Garland et al., 2001; Sander et al., 2003;
Cohen-Steiner et al., 2004].

Recently, both Sander et al. [2003] and Cohen-Steiner et al. [2004] introduced planar
segmentation methods inspired by Lloyd quantization. Their algorithms iterate between
chart growing and reseeding stages. After each chart growing iteration the methods
select the best seeds with respect to each chart and repeats the process. The authors
demonstrate that by iterating, they obtain better results than single pass methods.

Planes are a special type of developable surfaces. Thus for parameterization purposes
planar segmentation is over-restrictive and usually generates more charts than necessary.
Several recent approaches focused on developable segmentation instead [Lévy et al., 2002;
Zhou et al., 2004; Julius et al., 2005]. Lévy et al. [2002] proposed to detect high mean-
curvature regions on the mesh and then generate charts starting from seeds which are
farthest from those regions. This approach tends to capture many developable regions,
but can also introduce charts which are far from developable.

Zhou et al. [2004] propose a segmentation method based on spectral analysis of the
surface. They compute a matrix of geodesic mesh distances and then perform face
clustering by growing charts around the n farthest points in a space defined by the
dominant eigenvectors of the matrix.

Zhang et al. [2005] segment the surface into feature regions by finding field iso-
contours where the feature area increases significantly; then the features are classified
as linear ellipsoids, flat ellipsoids, or spheres, and cut using a lengthwise, circular, or
respectively a "baseball seam" cut. The resulting pieces are close to being developable
and can be parameterized with little distortion.

Similar to [Sander et al., 2003], Julius et al. [2005] use Lloyd iterations of growing
and reseeding. But instead of looking for planar regions they search for a larger subset
of developable surfaces, the so called “developable surfaces of constant slope”, which are
characterized by having a constant angle between the normal to the surface and some
axis vector. They provide a metric to measure if a chart closely approximates such a
surface, and use this metric in the chart growing and reseeding stages.

Chart packing: Chartification techniques raise an additional post-processing chal-
lenge. Following the parameterization of each individual chart, those charts need to be
placed, or packed, in a common parameter domain. For efficient storage of the para-
meterized meshes, the packing has to be as compact as possible. The optimal packing
problem is NP-hard, thus only heuristic or approximate packing algorithms exist. The
Tetris algorithm [Lévy et al., 2002] introduces charts one by one, searching for the best
fit along the active-front of the charts packed so far.

6.1.2 Seam Cutting

It is possible to reduce the parameterization distortion without cutting the surface into
separate patches by introducing multiple partial cuts or seams inside a single patch.
This typically leads to shorter cuts than those created by segmentation. Piponi and
Borshukov [2000] generated such cuts manually using a network of edges.
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(a) (b) (c)

Figure 6.2: Seam cutting: (a) [Sorkine et al., 2002]; (b) [Gu et al., 2002]; (c) [Sheffer and
Hart, 2002] - the color visualizes the surface visibility with more visible regions shown
in green and less visible in red.

Sorkine et al. [2002] perform parameterization and cutting simultaneously. They
unfold the mesh vertices onto the plane one after the other, optimizing the local mapping.
Whenever the distortion of the mapping reaches a threshold, they cut the mesh to reduce
it. As a result they have a hard bound on the distortion, but can end up with long and
complicated boundaries. To measure distortion, they use the singular values of the
per-triangle mapping.

Gu et al. [2002] use parameterization results to facilitate the cutting process. The
authors first parameterize the surface using shape preserving parameterization [Floater,
1997]. They then find the point of maximal parametric distortion on the mapping, and
generate the shortest cut from the surface boundary to that point. They repeat the
process until the distortion falls below a certain threshold.

The Seamster algorithm [Sheffer and Hart, 2002] considers the differential geometry
properties of the surface, independent of a particular parameterization technique. It first
finds regions of high Gaussian curvature on the surface and then uses a minimal spanning
tree of the mesh edges to connect those. Finally it cuts the mesh along the tree edges.
Sheffer and Hart [2002] scale the edge length by a visibility metric when computing the
minimal spanning tree. This way they are able to trace the cuts through the less visible
parts of the surface hiding the potential cross-cut discontinuities in texture or other
maps on the surface.

Genus reduction Seam cutting methods require an explicit preprocessing stage to
convert surfaces with high genus into topological disks. The generation of minimal length
cuts that convert a high genus surface into a topological disk is NP-hard [Erickson and
Har-Peled, 2004]. This problem had received a lot of attention on the computational
geometry community with a number of methods proposed which operate with differing
levels of success. A fairly practical approach is taken by Gu et al. [2002], who trace a
spanning graph of all the faces in the mesh and then prune this graph, obtaining a genus
reducing cut.
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(a) (b) (c)

Figure 6.3: Constraint enforcement with Matchmaker [Kraevoy et al., 2003]: (a) Texture
(two photos) with feature points specified; (b) input model with corresponding vertices
highlighted; (c) resulting texture.

(a) (b) (c)

Figure 6.4: Combining multiple textures [Zhou et al., 2005].

Figure 6.5: Two examples of constrained texture mapping [Lévy, 2001]
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6.2 Constraints

Sometimes a parameterization needs to accommodate user constraints, specifying corre-
spondences between vertices of the mesh. The most important application of constrained
parameterization is texture mapping 3D models from photographs [Lévy, 2001; Kraevoy
et al., 2003] (see Figures 6.5 and 6.3). Zhou et al. [2005] use more complex constraints to
allow the user to combine several images to produce a complete texture for a mesh. Con-
strained parameterization can also be used to hide cross-seam discontinuities [Kraevoy
et al., 2003; Zhou et al., 2005].

The methods for enforcing constraints can be split into two types, those that enforce
soft or approximate constraints and that that enforce hard constraints. Methods based
on energy minimization can accommodate soft constraints by adding a quadratic term
to the energy function, measuring the distance between the constraint features in the
current configuration and their desired location [Lévy, 2001]. Such constraints work
reasonably well in practice, and can be solved efficiently, since they only add linear
terms to the energy, but sometimes break theoretical guarantees about the original
parameterization method, such as bijectivity. The degree of constraint approximation
typically decreases with the distance between the constrained and unconstrained vertex
locations. Some applications, such as hiding texture discontinuities along seams in the
parameterization [Kraevoy et al., 2003; Zhou et al., 2005] require hard constraints to
achieve perfect alignment of the texture along the seams.

One way to enforce hard constraints is by adding them into a regular parameteriza-
tion formulation using Lagrange multipliers [Desbrun et al., 2002]. This approach allows
constraints to be defined on points inside triangles and on arbitrary line segments (the
vertices of the triangulation can be constrained more easily by taking the corresponding
variables out of the system). However, it is easy to show that for a given mesh connec-
tivity not every set of constraints can be satisfied. Thus methods like this that preserve
the mesh connectivity will fail to generate bijective parameterizations for many inputs.

Methods that enforce hard-constraints robustly, introduce additional vertices into
the mesh as they go along to ensure that a constrained solution exists. Eckstein et al.
[2001] enforce hard constraints by deforming an existing embedding while adding new
vertices when necessary. Theoretically, this method can handle large sets of constraints
but is extremely complicated.

The Matchmaker algorithm [Kraevoy et al., 2003] compute the parameterization by
establishing coarse patch correspondences between the input and the parameter do-
main. The provided feature points on the input model and the parameter domain are
connected using a network of curves that partition the surface into patches that are
then parameterized while trying to maintain continuity and smoothness between them.
The curve tracing process is guided by a set of topological rules that ensure that the
resulting patches will be consistent between the objects being parameterized and the
domain. They compute the triangulations of the input and the parameter domain si-
multaneously. Continuity and smoothness between patches can be obtained by relaxing
the parameterization.

Zhou et al. [2005] allow the user to combine several images to produce texture for a
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mesh, by assigning some surface patches to different images, as well as using in-painting
techniques to create texture for any unassigned transition patches between them. In
addition to geometric smoothness of the map, they take into account the continuity
of the texture signal being applied since it may come from different sources for two
neighboring patches.
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Chapter 7

Comparison of Planar Methods

The different methods reviewed minimize different types of distortion metrics. Ide-
ally, most parameterization applications work best on zero distortion parameterizations,
though most are tolerant to some amount of distortion, some being more tolerant to
shear and others to stretch. In general, applications that depend on regular grids for
sampling, such as different types of detail mapping and synthesis, as well as compression
and regular resampling schemes (e.g. geometry images [Gu et al., 2002]), tend to per-
form better on stretch minimizing parameterizations, since stretch is directly related to
under-sampling. In contrast, applications based on irregular sampling, such as remesh-
ing [Desbrun et al., 2002], are very sensitive to shearing, but can handle quite significant
stretch. When acceptable levels of shear or stretch are not attainable because a surface
is too complex, the surface needs to be cut prior to parameterization in order to achieve
acceptable distortion.

In addition to distortion, several other factors should be considered when choosing a
parameterization method for an application at hand:

• Free versus fixed boundary. Many methods assume the boundary of the planar
domain is pre-defined and convex. Fixed boundary methods typically use very
simple formulations and are very fast. Such methods are well suited for some
applications, for instance those that utilize a base mesh parameterization, see
Section 5.1. Free-boundary techniques, which determine the boundary as part of
the solution, are often slower, but typically introduce significantly less distortion.

• Robustness. Most applications of parameterization require it to be bijective. For
some applications local bijectivity (no triangle flips) is sufficient while others re-
quire global bijectivity conditions (the boundary does not self-intersect). Only a
subset of the parameterization methods can guarantee local or global bijectivity.
Some of the others can guarantee bijectivity if the input meshes satisfy specific
conditions.

• Numerical Complexity. The existing methods can be roughly classified according
to the optimization mechanism they use into linear and non-linear methods. Linear
methods are typically significantly faster and simpler to implement. However, as
expected the simplicity usually comes at the cost of increased distortion.
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Table 1 summarizes the more commonly used methods in terms of these properties.
Table 2 lists the runtimes for some of the more commonly used methods. We used the
Ray et al. [2003] 3D modeling system to time the fixed boundary methods, LSCM and
ABF++. For the other methods the timings were provided by the authors. As expected,
linear techniques are about one order of magnitude faster than the non-linear ones.
Nevertheless, even the non-linear methods are fairly fast taking less than two minutes
to process average size models. Figures 7.1 to 7.3 show some typical parameterization
results.
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Figure 7.1: Surfaces with nearly convex boundaries parameterized with linear methods
(images made with Graphite, http://alice.loria.fr/software).
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Figure 7.2: Surfaces with non-convex boundaries parameterized with linear methods
(images made with Graphite, http://alice.loria.fr/software).
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Figure 7.3: Surfaces with non-convex boundaries parameterized with non-linear methods
(images made with Graphite, http://alice.loria.fr/software).
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Chapter 8

Alternate base domains

Some applications are quite sensitive to discontinuities in the parameterization, or cannot
tolerate them at all. In such cases, when the object to be parameterized is not a topo-
logical disc, it is worthwhile to use a different base domain for the parameterization.
Examples of such domains that have been investigated include simplicial complexes,
spheres, and periodic planar regions with transition curves.

In addition, numerous applications of parameterization require cross-parameteriza-
tion or intersurface mapping between multiple models. Pair-wise mapping between mod-
els can be used for the transfer of different properties between the models, including
straightforward ones, such as texture, and less obvious ones such as deformation and
animation. It can also be used for blending and morphing, as well as mesh completion
and repair. The most common approach for pair-wise mapping is to parameterize both
models on a common base domain. Free-boundary planar parameterization is clearly
unsuitable for this purpose. Instead alternate domains such as a simplicial complex or
a sphere are commonly used.

8.1 The Unit Sphere

The big advantage of the spherical domain over the planar one is that it allows for
seamless, continuous parameterization of genus-0 models, and there are a large number
of such models in use. Thus, the spherical domain has received much attention in the
last few years, with several papers published about this topic. Some rigorous theory is
being developed, getting close to the level of understanding we have of planar parame-
terizations. These notes cover four main types of spherical parameterization approaches:
Gauss-Seidel iterative extension of planar barycentric methods; stereographic projection;
spherical generalization of barycentric coordinates; and multi-resolution embedding.

One attractive approach for spherical parameterization is to extend the barycentric,
convex boundary planar methods to the sphere. Several methods [Alexa, 2000; Gu and
Yau, 2002; Kobbelt et al., 1999] used Gauss-Seidel iterations to obtain such parameteri-
zation. They start by computing an initial guess and then moving the vertices one at a
time, first computing a 3D position for the vertex using a barycentric formulation [Eck
et al., 1995], and then projecting the vertex to the unit sphere. Isenburg et al. [2001]
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Figure 8.1: Spherical Parameterization.
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split the mesh in two, map the cut onto a great circle and embed each half-mesh onto
a hemisphere using a modified Tutte procedure. Regrettably, as proven by Saba et al.
[2005] projected Gauss-Seidel iterations decrease the residual for only a finite number of
iterations. As the result approaches a bijective solution, the scheme ultimately becomes
unstable, the residual increases, and the system collapses to a degenerate solution. Saba
et al. [2005] note that this behaviour is independent of step size.

Haker et al. [2000] compute a planar parameterization of the mesh first, using one
of the triangles as a boundary. They then use the stereographic projection to obtain
the spherical mapping. The result depends quite heavily on the choice of the boundary
triangle. This approach works quite well in practice, however it doesn’t offer any theo-
retical guarantees since the stereographic projection is bijective only for the continuous
case, and can produce triangle flips in the discrete case. A simple proof by example of
this statement can be obtained by imagining the great circle supporting the edge AB
of a mapped spherical triangle ABC. The (continuous) stereographic projection maps
this great circle to a circle in the original plane. The third vertex C can be perturbed
in the plane to cross from the interior to the exterior of the circle, without changing
the triangle orientation. The spherical triangle ABC will flip however as a result of this
perturbation, as the image of C on the sphere will cross from one side to the other of
the spherical edge AB.

Gotsman et al. [2003] showed how to correctly generalize the method of barycentric
coordinates, with all its advantages, to the sphere. The generalization is based on results
from spectral graph theory due to de Verdière [1993] and extensions due to Lovász and
Schrijver [1999]. They provide a quadratic system of equations which is a spherical
equivalent of the barycentric formulation. The authors do not provide an efficient way
to solve the resulting system, and thus their method is limited to very small meshes.
Saba et al. [2005] introduce a method for efficiently solving the system, by providing
a good initial guess and using a robust solver. First, similar to [Isenburg et al., 2001],
they partition the mesh in two, and embed each half on a hemisphere using a planar
parameterization followed by a stereographic projection. They then use a numerical
solution mechanism which combines Gauss-Seidel iteration with nonlinear minimization
to obtain the final solution.

An efficient and bijective alternative is suggested by multi-resolution techniques.
These methods obtain an initial guess by simplifying the model until it becomes a tetra-
hedron (or at least, convex), trivially embed it on the sphere, and then progressively
add back the vertices [Shapiro and Tal, 1998; Praun and Hoppe, 2003]. Shapiro and Tal
[1998] compute the embedding using purely topological operations and do not attempt to
minimize any type of distortion. Praun and Hoppe [2003] obtain a spherical parameteri-
zation by alternating refining steps that add vertices from a multi-resolution decomposi-
tion of the object with relaxation of single vertex locations inside their neighbourhoods.
The relaxation is aimed to minimize the stretch metric of the parameterization and is
guaranteed to maintain a valid embedding.
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Figure 8.2: A,B: Parameterization methods for disk-topology combined with segmenta-
tion algorithms can create a texture atlas from a shape of arbitrary topology. However,
the large number of discontinuities can be problematic for the applications. C: Global
parameterization algorithms do not suffer from this problem. (Data courtesy of the Digital
Michelangelo Project, Stanford).

8.2 Simplicial and quadrilateral complexes

As seen in Chapters 3 and 4, parameterization methods can put a 3D shape with disk
topology in one-to-one correspondence with a 2D domain. For a shape with arbitrary
topology, it is possible to decompose the shape into a set of charts, using a segmentation
algorithm (e.g. VSA [Cohen-Steiner et al., 2004]). Each chart is then parameterized (see
Figure 8.2-A,B). Even if this solution works, it is not completely satisfactory : why one
should “damage” the surface just to define a coordinate system on it ? From the appli-
cation point of view, chart boundaries are difficult to handle in remeshing algorithms,
and introduce artefacts in texture mapping applications. For this reason, we focus in
this section on global parameterization algorithms, that do not require segmenting the
surface. (Figure 8.2-C).

To compute such a global parameterization, the geometry processing community first
developed methods that operate by segmenting / prameterizing / and resampling the
object. To our knowledge, this idea was first developed in the MAPS method [Lee et al.,
1998] (Multiresolution Adaptive Parameterization of Surfaces). As shown in Figure 8.3,
this method starts by partitioning the initial object (Figure 8.3-A) into a set of trian-
gular charts, called the base complex (Figure 8.3-C). Then, a parameterization of each
chart is computed, and the object is regularly resampled in parametric space (Figure
8.3-C). Further refinements of the method improved the inter-chart continuity [Kho-
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Figure 8.3: The MAPS method and its derivatives compute a global parameterization
by decomposing the initial surface (A) into a set of triangular charts (B) and regularly
re-samples the geometry in the parameter space of these charts (C).

dakovsky et al., 2003], formalized by the notion of transition function, explained further
in this section. This representation facilitates defining hierarchical representations and
implementing multiresolution processing tools on top of it [Guskov et al., 1999].

Historically, the most popular non-planar base domain has been a simplicial complex
[Lee et al., 1998, 1999; Guskov et al., 2000, 2002; Lee et al., 2000; Praun et al., 2001;
Khodakovsky et al., 2003; Purnomo et al., 2004; Schreiner et al., 2004; Kraevoy and
Sheffer, 2004]. A simplicial complex can be considered as just the connectivity part of
a traditional triangle mesh: the sets of vertices, edges, and faces. Most applications
typically use simplicial complexes representing 2-manifolds with a boundary (an edge
can only be adjacent to 1 or 2 faces) with a small number of elements. One method for
obtaining such complexes is to simplify an original mesh. Once a suitable base mesh
has been chosen, the original mesh is parameterized by assigning each of its vertices to
a simplex of the base domain (vertex, edge, or face), along with barycentric coordinates
inside it.

Early methods took a two-step approach to computing a parameterization; in the
first step, elements of the fine mesh were assigned to faces of the base simplicial complex,
while the second step would compute barycentric coordinates for these elements, usually
using one of the fixed boundary parameterization methods discussed earlier. These steps
could be repeated, but typically not mixed. More recent methods, such as [Khodakovsky
et al., 2003], try to perform both steps at the same time.

8.2.1 Computing base complexes

To obtain the simplicial complex, [Eck et al., 1995] grow Voronoi regions of faces from
seed points and then use the dual triangulation. The seed points are initially linked
using shortest paths across mesh edges that provide the initial boundaries of the patches
corresponding to base domain faces. To straighten each of these paths, the two adjacent
patches are parameterized to a square. The path in question is then replaced with the
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diagonal of the square mapped onto the mesh surface.
[Lee et al., 1998] simplify the original mesh, keeping track of correspondences between

the original vertices and the faces of the simplified mesh. Others, like [Guskov et al.,
2000] (Figure 13 (c)) and [Khodakovsky et al., 2003] use clustering techniques to generate
the patch connectivity and derive the base-mesh from it.

The construction becomes more challenging when multiple models need to be pa-
rameterized on the same complex [Praun et al., 2001; Schreiner et al., 2004; Kraevoy
and Sheffer, 2004]. Praun et al. [2001] partition a mesh into triangular patches, which
correspond to the faces of a user given simplicial complex, by drawing a network of paths
between user-supplied feature vertices that correspond to the vertices of the base mesh.

Schreiner et al. [2004] and Kraevoy and Sheffer [2004] extend the methods of Praun
et al. [2001] and Kraevoy et al. [2003] to construct the simplicial complex automatically,
in parallel to the patch formation. The input to both methods includes a set of corre-
spondences between feature vertices on the two input models. The methods use those as
the vertices of the base complex. They simultaneously trace paths on the input meshes
between corresponding pairs of vertices, splitting existing mesh edges if necessary. Tarini
et al. [2004] were the first, to our knowledge, to use a quadrilateral base domain. Such
a domain is much more suitable for quadrilateral remeshing of the input surface and for
spline fitting. Tarini et al. [2004] generate the base domain manually.

8.2.2 Mapping to the base mesh

Once the discrete assignment to base domain faces has been done, the barycentric coordi-
nates can be computed using fixed-boundary planar parameterization. Earlier methods
computed the barycentric coordinates once, based on the initial assignment of the ver-
tices to the base triangles. More recent methods [Khodakovsky et al., 2003; Kraevoy
and Sheffer, 2004, 2005; Tarini et al., 2004] use an iterative process where vertices can
be reassigned between base faces.

Khodakovsky et al. [2003] perform the vertex-to-patch assignment and coordinate re-
laxation in a single procedure, by letting vertices cross patch boundaries using transition
functions. A transition function expresses the barycentric coordinates of a vertex with
respect to a base domain face as barycentric coordinates for a neighboring base domain
face. For this procedure only the images of the base domain vertices needs to be fixed,
rather than the edges as well as in the previous methods. The authors relax the base
domain vertices separately, prompting a new run of the main relaxation. In practice, this
cycle is repeated only very few times. The implementation sometimes needs to discard
some relaxation results when mesh vertices moved around base domain vertices end up
with barycentric coordinates that are invalid for all the base domain faces around that
vertex.

Tarini et al. [2004] and Kraevoy and Sheffer [2004, 2005] fix the boundary of a group
of base mesh faces, update the barycentric coordinates in the interior, and then possibly
re-assign some vertices to different faces inside the group. The methods differ in the
grouping they use and the choice of parameterization technique used for the barycentric
coordinates computation.
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Figure 8.4: A global parameterization (also called differential manifold in the mathe-
matics literature) is a set of parameterized charts (ϕ, ϕ′, . . .) connected by differentiable
transition functions (τϕ→ϕ′ . . .).

8.3 Global Parameterization

This family of methods use a set of triangular charts to define the base complex. For some
applications, such as texture mapping, or surface approximation with tensor-product
splines, it is preferred to use a base complex composed of quadrilaterals. The difference
seems subtle at first sight, but automatically constructing a good quadrilateral base
complex is still an open problem. A variant of the MIPS [Hormann and Greiner, 2000a]
method, applied to a quadrilateral base complex, was proposed [Tarini et al., 2004]. The
method lets the user interactively define the base complex. More recently, advances to
automate the process were made, as shown further in this section.

The next subsection introduces the fundamental notions. Then we will review recent
advances in this area.

8.3.1 Differential manifold

We start by defining the notion of differential manifold (that formalizes the notion
of global parameterization outlined at the beginning of the section). This makes it
possible to define a globally smooth parameterization on a surface of arbitrary genus, by
connecting multiple local parameterizations. To our knowledge, the notion of differential
manifold was first introduced to the geometry processing community by Grimm and
Hugues [Grimm and Hughes, 1995]. More recently, a construct was proposed to define
surfaces of class C∞ [Ying and Zorin, 2004].

Given a surface S, we consider a set of (possibly overlapping) topological disks {C},
called charts, and a set of functions {ϕ} that put each chart C in correspondence with
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a 2D domain Ω (c.f. Figure 8.4). The 2D coordinates will be denoted by θ, φ. The set
of functions {ϕ} defines a differential manifold if the following condition is satisfied :
Given two charts C and C′, if their intersection C∩C′ is homeomorphic to a disk, then
the two images of their intersection C ∩ C′ in parametric space through ϕ and ϕ′ are
linked by a differentiable geometric transform τϕ→ϕ′:

∀p ∈ C ∩C′, ϕ′(p) = τϕ→ϕ′ (ϕ(p))

The functions τϕ→ϕ′ are called transition functions [Khodakovsky et al., 2003]). A
manifold is said to be affine if all the transition functions are translations. Complex
manifolds admit any one-to-one conformal function as a transition function (c.f. Sec-
tion 4.3 for the notion of conformality). In particular, this includes similarities, i.e.
functions composed of translations, rotations and scalings.

8.3.2 Exterior calculus

By using a representation of a manifold as a set of charts (with the associated transition
functions), it is possible to manipulate functions defined over the manifold, compute their
gradients and integrate them over subsets of the manifold. However, these computations
often involve the Jacobian matrix of each local parameterization in a non-trivial manner,
and make all the computations quite involved. Despite the possibility of using formal
tools (e.g. Maple), this way of conducting computations remains frustrating from an
intellectual point of view.

Exterior calculus is an elegant alternative to this problem. This is a geometric calcu-
lus, without coordinates, that considers the functions as abstract mathematical objects,
combined with operators. At the end, to use the functions, one still needs to “instantiate”
them in a local coordinate frame. However, by post-poning the (lower-level) represen-
tation in coordinates at the end of the mathematical reasoning, most computations are
simplified by higher level considerations, guided by the algebraic structure defined by
the functions and the operators.

Exterior calculus generalizes the fundamental theorem of calculus, that defines the
integral of a function : ∫ b

a

f(x)dx = F (b)− F (a)

where F denotes the primitive of f .
The generalized theorem writes: ∫

Ω

dω =

∫
∂Ω

ω

where ω is a differential k-form, ∂Ω denotes the border of Ω, and d denotes the exterior
derivative. For the moment, one may think about a k-form as something that wants
to be integrated over a k-dimensional domain. Therefore, 0-forms correspond to classic
functions, 1-form to vector fields (that one can integrate along a curve), and 2-forms
to functions that one wants to integrate over a surfacic domain. About the exterior
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derivative, this is a generalization of the gradient operator. The exterior derivative has
also the noticeable property of vanishing when applied twice (ddω = 0), we will explain
why further.

The divergence theorem (Ostrogradsky-Gauss) is a particular case :∫
vol

divKdv =

∫
∂vol

K ·NdS

where N denotes the normal to the border of the volume. Note that in the “exterior
calculus” version, the scalar product with the normal is already taken into account by the
integration over ∂Ω (this is the way exterior calculus considers the border of a subset).
More generally, exterior calculus exhibits a symmetry between the integrated entities
(called differential forms) and the integration domains (called chains). The integration
of a form ω over a chain Ω is then a certain type of inner product (or dot product)
< ω, Ω >. The border operator ∂ computes the border ∂Ω of a chain Ω, and returns
another chain, of lower dimension. With this notation, Stokes theorem writes :

< dω, Ω >=< ω, ∂Ω >

in other words, from an intuitive point of view, the exterior derivative d becomes the
border operator ∂ when one “shifts” if from the integrated form ω to the integration
domain Ω. This exhibits the duality between the exterior derivative d and the border
operator ∂. For this reason, differential forms are also called co-chains and the exterior
derivative is also called the co-border operator1.

Finally, one can note that the fundamental theorem of calculus is retrieved as a
special case : ∫

(a,b)

f(x)dx =

∫
a,b

dF =

∫
a−∪b+

F = F (b)− F (a)

This is the orientation of the border ∂(a, b) = a− ∪ b+ that introduces the “-” sign in
front of F (a).

To our knowledge, notions of exterior calculus first appeared in the community in
Pinkall and Polthier’s paper [Pinkall and Polthier, 1993], where they used Hodge duality
to compute minimal surfaces. Then, Gu et. al [Gu and Yau, 2003; Jin et al., 2004] used
the fundamental notions involved in Poincaré’s conjecture to compute global parame-
terizations. Anil Hirani developed in his Ph.D thesis a discrete counterpart of exterior
calculus (DEC) [Hirani, 2003], especially well suited to geometry processing with meshes.
More recently, in 2005, Schröeder and Desbrun gave a course at SIGGRAPH about DEC.
This latter course contributed to make these complex abstract notions accessible to a
wider community, and we redirect the interested reader to their course notes for more
details on this fascinating topic. The next subsection quickly reviews methods based on
co-homology (and introduces the related notions). In what follows, we keep the general
continuous setting for the explanations.
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Figure 8.5: Homology bases of a torus and a double torus.

8.3.3 Homology and co-homology

As we have seen in the previous subsection, the notion of border of an integration do-
main plays a central role in exterior calculus, since the fundamental theorem (Stokes)
connects integrals over the domain with integrals on the border. This exhibits funda-
mental connections between the theory of integration and the topology of the surface,
characterized by its homology group. For instance, two closed curves C1 and C2 are
homologically equivalent if one can be transformed into the other one by continuous
deformation. More generally, two closed curves are homology-equivalent if their union
corresponds to the border of a subset of the object2. This notion makes it possible to
decompose any curve in the surface into a “sum” of fundamental curves, called an ho-
mology basis. Figure 8.5 shows an example of homology basis for a torus and double
torus. More generally, an homology basis of an object of genus g (in other word, a coffee
cup with g handles) has 2g elements. As can be seen in the Figure, each handle adds 2
fundamental curves (one of them winds around the handle, and the other one winds in
the perpendicular direction).

We have mentioned in the previous section the duality between integration domains
and differential forms. This duality also applies to the notion of homology (that relates
to curves, or chains), from which co-homology (that relates to co-chains, or differential
forms) can be derived. We first need to give two more definitions:

• A form ω is closed if dω = 0

• A form ω is exact if it is equal to the exterior derivative of another form (∃σ/ω =
dσ);

Note that exact forms are closed (since ddω = 0∀ω). Based on the duality between
forms (things to be integrated) and chains (domains of integration), we can now better

1In exterior calculus, the dual of a thing is called the co-thing.
2We see again that the notion of border involved in the fundamental theorem plays a central role.

72



understand the terminology and notations : the boundary operator ∂ is dual to the
exterior derivative d, a closed form ω (i.e. such that dω = 0) is dual to a closed chain Ω
(i.e. such that ∂Ω = 0). Moreover, the boundary of a chain is always closed (∂∂Ω = �),
this explains why the exterior derivative vanishes when applied twice (ddω = 0).

We can now elaborate on co-homology : on a surface, one can associate to each
fundamental curve of the homology basis a set of closed 1-forms (e.g. vector fields) that
are equivalent with respect to co-homology. More precisely, two 1-forms ω1 and ω2 are
equivalent if their integral along all the curves of the homology basis match. Note that
this is the case if their difference ω2 − ω1 is exact since the integration of the difference
along an element Ω of the homology basis gives :

∃σ/ω2 − ω1 = dσ ⇒< Ω, dσ >=< ∂Ω, σ >=< �, σ >= 0

(we remind that the elements of the homology basis are closed curves). We can now
give the general definition of co-homology, that is to say the quotient space of closed
forms on exact forms (i.e. two closed forms are equivalent if their difference is an exact
form). This relation is dual to homology: two closed curves are equivalent if they are
the border of a subset3.

As shown in Figure 8.6, Gu and Yau used these notions to compute a global con-
formal parameterization on a surface of arbitrary genus [Gu and Yau, 2003; Jin et al.,
2004]. To do so, they compute a holomorphic function (i.e. the generalization of con-
formal functions mentioned in Section 4.3), based on an important theorem that states
that each co-homology class contains a unique harmonic one-form. We have already
seen that the coordinates of a conformal map are two harmonic functions. Similarly,
a holomorphic function is composed of two conjugate (i.e. orthogonal) harmonic one-
forms. Then, their method operates as follows : they first compute a homology basis
of the surface (using for instance Erickson’s method [Erickson and Whittlesey, 2005] or
Lazarus’s one [Lazarus et al., 2001]) (A), then they deduce a co-homology basis, and
find a pair of conjugate harmonic one-forms (B). Finally, they integrate the one-forms to
find the parameterization (C). Note that for an object of genus g, the parameterization
has necessarily 2g singularities. Ray et.al [Ray et al., 2006] have proposed a way of au-
tomating the placement of these singularities and generalize them to fractional indices
(see Figure 8.7).

In practice, the discrete version of Gu et. al ’s framework operates by solving linear
systems with three types of constraints: harmonicity, closedness, and duality. The
harmonicity equations are similar to the ones used by planar methods: the sum of
vectors for edges incident to a vertex, weighed by the cotangent harmonic weights, is
zero. The closedness equations state that the sum of the 3 vectors for the edges of each
face is zero (a “gradient field” has no divergence). The duality conditions replace the
boundary conditions in traditional parameterizations; they impose fixed values for the
integral of the field on the closed loops forming the homology basis of the surface (the 2g
curves that cut open the handles of the mesh, where g is the genus of the surface). Several

3Being the border of a subset is dual to exactness for forms.
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Figure 8.6: The method developed by Gu and Yau to construct a differential manifold
first computes a homology basis (A), then deduces a co-homology basis and finds the
(unique) harmonic one form in each co-homology class (B). Finally, the u and v poten-
tials are obtained by integrating these harmonic one-forms (C), that together define a
holomorphic function (D) (data courtesy of Stanford, parameterization courtesy of X. Gu)
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Figure 8.7: It is well known from mathematicians and rattan objects makers that the
mesh of an object of genus g has 2g singularities (or poles). Thus, a sphere (g = 1)
has two poles (A). It is possible to subdivide a pole into two half-poles (B) or four
quarter-poles (C). The order of multiplicity of a pole, or the rotation angle that the
mesh undergoes when turning around the pole is called the index of the pole.

systems are solved, in each system the integral across one of the curves is constrained
to 1, and all the others to 0.

Other authors have proposed methods that directly compute the parameterization,
based on modified Floater conditions. For instance, Steiner and Fischer have proposed to
make the object equivalent to a disk using a cut graph, and insert translation vectors in
Tutte’s conditions related to the vertices located on the cut graph [Steiner and Fischer,
2005]. Tong et.al developed independently the same idea [Tong et al., 2006], using the
formalism of exterior calculus mentioned above, and adding singularities of fractional
index.

To summarize, these methods [Gu and Yau, 2002; Kharevych et al., 2006; Tong et al.,
2006] implicitly create a parameterization by solving for differential one-forms. Instead
of associating (u, v) coordinates with vertices as in typical planar parameterization, they
associate planar vectors (du, dv) with the edges of the mesh, computing a gradient field,
or one-form. These parameterizations can be converted to a special form of planar
parameterization by fixing a vertex, then walking around to other vertices and adding
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Figure 8.8: From a triangulated mesh (left), the Periodic Global Parameterization
method starts by smoothing a vector field (center) and then computes a parameteri-
zation such that the gradient vectors are aligned with the vector field (right).

edge vectors. The method guarantees that inside a topological disc region, the same
coordinates are obtained for each vertex regardless of the path used to walk to it from
the source vertex. Genus-1 can be mapped to an infinite plane using a multi-periodic
function by tiling the plane using a modular parallelogram - a fundamental domain
bounded by 4 curves, parallel two by two. For higher genus, applying this method
directly will cover the plane multiple times. Such parameterizations are guaranteed to
be continuous everywhere, except at a small number of singular points, and are therefore
sometimes referred to as globally continuous parameterizations.

8.3.4 Periodic Global Parameterization

The Periodic Global Parameterization method [Ray et al., 2006], shown in Figure 8.8,
aims at letting the singularities naturally emerge from the optimization of the para-
meterization. As a consequence, it is not possible to determine the homology basis in
advance. As in Alliez et. al ’s anisotropic remeshing method [Alliez et al., 2003], the
method first computes a guidance vector field by smoothing the principal directions of
curvature. Then the difficulty is to allow the coordinates to wind around the features
of the object. To do so, the method uses the natural periodicity of the sine and co-
sine function. The complete optimization problem is restated in terms of new variables,
that correspond to the sine and cosine of the actual coordinates. The main difficulty
is that the method generates invalid vertices, edges and triangles around the singular-
ities. Therefore it requires a post-processing step. At this point, we can either use
methods based on co-homology (but they require manual intervention), or PGP (but it
requires an inelegant post-processing to fix the singularities). However, another category
of methods, based on eigenvectors computations, seem a promising research avenue to
define both automatic and simple methods.
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8.3.5 Spectral methods

Spectral methods study the eigenfunctions of operators (or eigenvectors of matrices
in the discrete setting). Several reviews on this topic are available [Gotsman, 2003;
Lévy, 2006], and we also give some web references on the following webpage http:
//alice.loria.fr/publications.

We focus on the Laplace operator, that plays a fundamental role in conformal mesh
parameterization, as shown in Section 4.3.

The eigenfunctions f of the Laplace operator ∆ are characterized by :

∆f = λf

Before elaborating on the eigenfunctions, we give more detailed about the Lapla-
cian and its generalizations. The Laplacian plays a fundamental role in physics and
mathematics. In Rn, it is defined as the divergence of the gradient:

∆ = div grad = ∇.∇ =
∑

i

∂2

∂x2
i

Intuitively, the Laplacian generalizes the second order derivative to higher dimensions,
and is a characteristic of the irregularity of a function as ∆f(P ) measures the difference
between f(P ) and its average in a small neighborhood of P . Generalizing the Lapla-
cian to curved surfaces require complex calculations, that can be greatly simplified by a
mathematical tool called exterior calculus (EC). See section 8.3.2 or Peter Schroeder’s
Siggraph 2005 course for more details about exterior calculus. EC generalizes the gra-
dient by d and divergence by δ = ∗d∗ (where ∗ denotes the Hodge star), which are built
independently of any coordinate frame. Using EC, the definition of the Laplacian can
be generalized to functions defined over a manifold S with metric g, and is then called
the Laplace-Beltrami operator:

∆ = div grad = δd =
∑

i

1√
|g|

∂

∂xi

√
|g| ∂

∂xi

where |g| denotes the determinant of g. The additional term
√
|g| can be interpreted as a

local "scale" factor since the local area element dA on S is given by dA =
√
|g|dx1∧dx2.

The eigenfunctions and eigenvalues of the Laplacian on a (manifold) surface S, are
all the pairs (Hk, λk) that satisfy −∆Hk = λkH

k. The “−” sign is here required for
the eigenvalues to be positive. On a closed curve, the eigenfunctions of the Laplace
operator define the function basis (sines and cosines) of Fourier analysis4. On a square,
they correspond to the function basis of the DCT (Discrete Cosine Transform), used
for instance by the JPEG image format. Finally, the eigenfunctions of the Laplace-
Beltrami operator on a sphere define the Spherical Harmonics basis. Figure 8.9 shows
how they look like for a more general object. Since it generalizes spherical harmonics

4This is easy to check by noticing that in 1D, the Laplace operator corresponds to the standard second
order derivative. The eigenfunctions are simply sinωt (resp. cos) associated with the eigenvalues −ω2.
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Figure 8.9: Some of the eigenfunctions of the Laplace operators.

to arbitrary manifolds, this function basis is naturally called the Manifold Harmonics
Basis (MHB) [Vallet and Lévy, 2007]. This tech-report gives their formal definition using
the finite element formalism, and explains how to efficiently compute the MHB. In the
discrete setting, one can approximate the eigenfunctions by computing the eigenvectors
of a discrete Laplacian. Many different applications can use these eigenfunctions (some
of them replace the discrete Laplacian with a combinatorial Laplacian, that only takes
the mesh connections into account) :

• matrix re-ordering [Fiedler, 1973] and mesh re-ordering [Isenburg and Lindstrom,
2005]

• mesh compression [Karni and Gotsman, 2000]

• shape classification [Reuter et al., 2006]

• graph embedding [Koren, 2003]

The graph embedding problem (i.e. how to nicely draw a graph by placing its ver-
tices on the screen) shows strong connections with the parameterization problem. Note
that Tutte’s paper where his celebrated theorem is proved is entitled how to draw a
graph [Tutte, 1963]. This general problem is also well known by the automatic learning
research community as a Manifold learning problem, also called dimension reduction, see
for instance Martin Law’s web page http://www.cse.msu.edu/~lawhiu/manifold/. In
other words, given a graph embedded in Rn, one tries to estimate its intrinsic dimension
(is this a curve, a surface, a volume or an object of even higher-dimension ?). One of
these methods, called ISOMAP [Tenenbaum et al., 2000] computes the geodesic dis-
tances between each pair of vertex in the graph, and then uses MDS (multidimensional
scaling) [Young, 1985] to compute an embedding that best approximates these distances.
Multidimensional scaling simply minimizes an objective function that measures the de-
viation between the geodesic distances in the initial space and the Euclidean distances in
the embedding space (GDD for Geodesic Distance Deviation), by computing the eigen-
vectors of the matrix D = (di,j) where di,j denotes the geodesic distance between vertex
i and vertex j.

Isomaps and Multidimensional scaling were used to define parameterization algo-
rithms in [Zigelman et al., 2002], and more recently in the ISO-charts method [Zhou

78



Figure 8.10: Spectral Surface Quadrangulation first computes a Laplace eigenfunction
(A), then extracts its Morse complex (B), smooths it (C) and uses it to partition the
mesh into quads, that can be parameterized (D).

et al., 2004], used in Microsoft’s DirectX combined with the packing algorithm pre-
sented in [Lévy et al., 2002]. Interestingly, the ISO-charts method uses MDS for both
segmenting the model and parameterizing the charts. This provides a nice and coherent
theoretical framework, that can be relatively easily translated into efficient implementa-
tions.

However, the spectral parameterization methods listed above still need to partition
the mesh into charts. More recently, Dong et. al used the Laplacian to decompose a
mesh into quadrilaterals [Dong et al., 2005, 2006], in a way that facilitates constructing a
globally smooth parameterization. As shown in Figure 8.10, their method first computes
one eigenfunction of the Laplacian (the 38th in this example), then extract the Morse
complex of this function, filters and smooths the Morse complex and uses it to partition
the mesh into quads. These quads are parameterized, and inter-chart smoothness can be
further optimized using global relaxation [Khodakovsky et al., 2003; Tarini et al., 2004].
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Chapter 9

Cross-Parameterization / Inter-surface Map-
ping

In a cross-parameterization or inter-surface-mapping setup the parameter domain for
one mesh is another surface mesh. Cross-parameterization is used to morph or blend
between meshes and to transfer properties between them. For morphing in addition to
obtaining a mapping it is necessary to obtain a common compatible connectivity for the
two meshes. The most common approach for pair-wise mapping is to parameterize both
models on a common base domain. Free-boundary planar parameterization is clearly
unsuitable for this purpose. Instead alternate domains such as a simplicial complex or
a sphere are commonly used.

9.1 Base Complex Methods

Many methods use mapping to a common base-complex to obtain a cross-parameteriza-
tion. Since the base must be shared the construction is significantly more challenging
than when parameterizing a single mesh. Praun et al. [2001] partition a mesh into
triangular patches, which correspond to the faces of a user given simplicial complex, by
drawing a network of paths between user-supplied feature vertices that correspond to
the vertices of the base mesh.

Schreiner et al. [2004] and Kraevoy and Sheffer [2004] extend the methods of Praun
et al. [2001] and Kraevoy et al. [2003] to construct the simplicial complex automatically,
in parallel to the patch formation. The input to both methods includes a set of corre-
spondences between feature vertices on the two input models. The methods use those as
the vertices of the base complex. They simultaneously trace paths on the input meshes
between corresponding pairs of vertices, splitting existing mesh edges if necessary.

Once the base is created, the meshes can be mapped to the base using the techniques
reviewed in the chapter on alternative domains. Schreiner et al. [2004] use an alternative
approach. They never compute an explicit map between the full-resolution objects
and the base domain. Instead, they alternate the role of base domain between the
two meshes, at various complexity levels in a multi-resolution representation. They
progressively refine each mesh by adding new vertices and relaxing their location using a
stretch-based metric measured on a temporary planar unfolding of their neighborhoods.
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Figure 9.1: Base complex construction.
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9.2 Energy driven methods

Several methods use an energy-driven approach for cross-parameterization, where one
mesh is directly attracted towards the other [Allen et al., 2003; Sumner and Popović,
2004]. The attraction energy function consists of components that pull the vertices of
one mesh towards nearest locations on the other while trying to preserve the shape of the
mesh as much as possible. To facilitate correspondence they require the user to specify
several dozen point-to-point correspondences between the input models. The methods
work well when the meshes are very similar, e.g. humans in the same pose [Allen et al.,
2003] but tend to converge to a poor local minimum with increase in shape difference.
These methods are quite sensitive to the weights used inside the energy functional to
account for the different components. One advantage of these approaches is that they
can find mappings between models of different topology (genus, etc.), though these maps
are no longer bijective.

9.3 Compatible Remeshing

For applications such as morphing it is not enough to obtain a cross-parameterization
between the two models. For these applications, at the end of the process the two models
are typically required to have the same connectivity. There are three main approaches
for generating such common connectivity.

• Base mesh subdivision: Several methods including [Praun et al., 2001] use the
base mesh connectivity and refine it using the one-to-four subdivision pattern,
introducing as many levels of subdivision as necessary to capture the geometry
of both models. The advantage of the method is simplicity. It’s drawback is the
dependence on the shape of base mesh triangles. The method also tends to require
large triangle count to achieve acceptable accuracy (roughly factor 10 compared
to input mesh sizes).

• Overlay: Another approach for generating common connectivity [Alexa, 2000;
Schreiner et al., 2004] is to intersect the two input meshes in the parameter domain,
combining all their vertices and generating new vertices at edge-edge intersections.
The method preserves exactly the input geometries but is not-trivial to implement
and like subdivision increases the triangle count by roughly a factor of 10.

• Remeshing: In [Kraevoy and Sheffer, 2004] the authors propose an alternative
where they use the connectivity of one of the input meshes as a basis and then
refine it as necessary based on an approximation error with respect to the second
mesh. The resulting meshes have significantly lower triangle count than using the
other two approaches. The result heavily depends on which of the inputs is selected
as the source for common connectivity. Unlike in the overlay approach, some fine
features of the second mesh are only approximated and it is difficult to faithfully
reproduce sharp features.
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Chapter 10

Numerical Optimization

In all the parameterization methods listed in the section above (Floater’s parameteriza-
tion method, harmonic parameterization, conformal parameterization), we need either
to solve a linear system or to minimize a quadratic objective function. A specificity of
the numerical problems yielded in mesh parameterization is that the involved matrices
are usually sparse. As a consequence, we will first explain how to efficiently implement
a data structure for sparse matrices. To make user’s life easier, we propose an imple-
mentation that can dynamically grow when coefficients are added to the matrix. A
C++ version of this implementation is given in the companion material, based on the
std::vector data structure. This data structure is available in our Graphite software.
We also provide a C version in OpenNL http://alice.loria.fr/software. Note that
this data structure can be easily extended. Our C++ and C implementations also pro-
vide the following features (not detailed in the implementation given in the appendix to
keep its length reasonable):

1. storage of the diagonal term

2. storage of both sparse rows and columns

3. symmetric storage (i.e., do not store the upper triangle for symmetric matrices)

4. non-square matrices

5. matrix × matrix multiply

Features (1) and (2) are interesting for implementing Jacobi preconditioner (re-
quires 1) or SSOR preconditioner (requires 1+2). Feature (3) speeds up the conjugate
gradient algorithm (but requires some modification in the matrix × vector routine).
Features (4) and (5) can be used by more sophisticated non-linear solvers (such as MIPS
and ABF).

Numerical methods are a particularly efficient formalism for geometric modeling
problems that involve large meshes. The approach consists in formalizing the problem
as a function of many variables and optimizing it. The variables correspond to values
(e.g., coordinates, colors, texture coordinates, etc.) attached to the vertices of the mesh.
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Figure 10.1: Example of sparse matrix with TRIAD format

These numerical optimization problems involve large matrices, defined from the mesh
and the values attached to the vertices and/or the edges and/or the facets of the mesh. In
most cases, these matrices are sparse (and have a structure identical or strongly related
with the adjacency matrix of the graph formed by the mesh). We start this section by
reviewing some efficient data structures to represent sparse matrices.

10.1 Data structures for sparse matrices

Algorithm 1 TRIAD data structure for sparse matrices
struct TRIADMatrix {

int N ; // dimension of the matrix
int NNZ ; // number of non-zero coefficients
double* a ; // non-zero coefficients (array of size NNZ)
int* I ; // row indices (array of size NNZ)
int* J ; // column indices (array of size NNZ)

} ;

Algorithm 2 Matrix × vector product with the TRIAD data structure
void mult(double* y, TRIADMatrix* M, double* x) {

for(int i=0; i<M->N; i++) {
y[i] = 0.0 ;

}
for(int k=0; k<M->NNZ; k++) {

y[M->I[k]] += M->a[k] * x[M->J[k]] ;
}

}
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Figure 10.2: Example of sparse matrix represented in the CRS format.

10.1.1 TRIAD data structure

To optimize the storage of sparse matrices, the first idea that comes naturally to mind
consists in storing only the non-zero coefficients, with the associated (i, j) indices. There-
fore, instead of storing n2 coefficients, we only need to store NNZ coefficients (NNZ:
Number of Non-Zero coefficients) and the same number of (i, j) indices. This data
structure is referred to as the TRIAD format, depicted in Figure 10.1. We also show an
implementation in C (Algorithm 1). The function that computes the product between a
sparse matrix in TRIAD format and a vector is given by Algorithm 2). For instance, this
function is particularly useful to implement a solver based on the Conjugate Gradient
method (see below).

Despite the obvious gain realized by the TRIAD format as compared to a regular
2D array, this representation still shows a high redundancy of the coefficients i, that
store the row index associated to each entry. For this reason, this format is seldom used
in numerical libraries (it is limited to input file formats, since its simplicity favors its
understanding and use). In practice, the CRS (Compressed Row Storage) data structure
is preferred, since it is more compact in memory. We detail this format in the next
subsection.

Algorithm 3 Compressed Row Storage data structure for sparse matrices
struct CRSMatrix {

int N ; // dimension of the matrix
int NNZ ; // number of non-zero coefficients
double* a ; // non-zero coefficients (array of size NNZ)
int* colind ; // column indices (array of size N)
int* rowptr ; // row pointers (array of size N+1)
double* diag ; // diagonal elements (array of size N)

} ;
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10.1.2 Compressed Row Storage

The CRS format (Compressed Row Storage) is one of the most commonly used data
structure for sparse matrices, used in large numerical libraries. The transposed vari-
ant CCS (Compressed Column Storage) is also used (depending on the algorithms and
implementation choices). We present here the CRS format. Algorithm 3 presents the
implementation in C, and Figure 10.2 shows an example. The CRS data structure uses
three indices to represent non-zero coefficients and their indices. As in the TRIAD for-
mat, the array a stores all the non-zero entries. The array colind gives for each entry
the corresponding column index. The rows are encoded in a different, more compact
manner, by the rowptr array. This array gives for each row its start and end in the
arrays a and colind. To facilitate the coding of algorithm, a common practice consists
in completing the array colind by an additional entry, that points one entry past the
last entry of the matrix. This additional entry of colind is called a sentry and avoids a
test in the matrix × vector product, as shown below.

Algorithm 4 Matrix × vector product with the CRS format
void mult(double* y, CRSMatrix* M, double* x) {

for(int i=0; i<M->N; i++) {
y[i] = 0.0 ;
for(int jj=M->rowptr[i]; jj<M->rowptr[i+1]; jj++) {

y[i] += M->a[jj] * x[M->colind[jj]] ;
}

}
}

Algorithm 4 shows how to implement the product between a sparse matrix M stored
in the CRS format and a vector x. The sentry rowptr[N] = NNZ avoids to have a
particular case for the last row of the matrix.

Different versions of the CRS data structure exist. Thus, if the matrix is symmetric,
it is possible to save some memory by only storing the lower triangular part of the matrix.
Other variants store the diagonal coefficients in a separate array, to facilitate the imple-
mentation of the Jacobi preconditioner (see below). Other variants store the columns
instead of the rows (CCS: Compressed Column Storage). Finally, the BCRS (Block
Compressed Row Storage) partitions the matrix into fixed size blocks and stores them
in the CRS format. This both optimizes memory accesses, and favors using extending
instruction sets (e.g. SSE on Intel Processor).

The CRS data structure and its variants are both compact and efficient. However,
in our particular context of numerical problems related with geometric optimization of
3D meshes, the CRS data structure is somewhat too rigid, as explained below. In a
geometric optimization problem, it is natural to assemble the matrix by traversing the
graph that corresponds to the mesh. During the traversal, coefficients are accumulated
in the matrix, generated by elementary neighborhoods (called stencils in finite elements
parlance). Since the CRS data structure requires to define the number of non-zero
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Figure 10.3: Dynamic sparse matrix data structure

coefficients in advance, constructing a CRS matrix requires two traversals of the graph.
The first traversal determines the non-zero pattern, i.e. the set of (i, j) index couples
such that ai,j is non-zero. Then, the data structure is allocated in memory. Finally, a
second traversal computes the numerical values of the ai,j entries. In practice, this way
of proceeding is uncomfortable to implement. For this reason, we propose a dynamic
matrix data structure, for which the number of non-zero coefficients can vary. The
implementation is available in our library OpenNL and in the Graphite platform (http:
//alice.loria.fr/software).

10.1.3 Dynamic matrices

Our dynamic sparse matrix is built around the class std::vector of the standard C++
library (STL for Standard Template Library). This container class show the interesting
capability of growing in memory while minimizing the number of required copies1. Thus,
our dynamic sparse matrix data structure, depicted in Figure 10.3, and detailed in
Algorithm 5, consists of an array row. Each row is implemented by a std::vector of
value-index pairs, and each pair is represented by an instance of the Coeff structure.
The whole data structure shows a memory storage requirement comparable to the CRS
format, while offering better flexibility. This flexibility is exposed to the user by the
function add(i,j,val), that adds the value val to the coefficient ai,j.

The matrix-vector product remains simple to implement with this structure. The
source code is given in Algorithm 6. However, it is important to notice that this better
flexibility is obtained at the expense of lower performances of the matrix × vector
product (approximately by a factor of 2 in our experimentation). This can be explained
by the loss of data locality, that results in less efficient cache usage as compared to
the CRS representation. For this reason, in the case where a large number of matrix

1This is done by doubling the size of the memory space allocated to the container each time a copy
operation is necessary. This makes the number of copies decrease as a function of the log of the final
size.
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Algorithm 5 Dynamic sparse matrix data structure
class SparseMatrix {
public:

struct Coeff {
Coeff() { }
Coeff(int j, double val) : index(j), a(val) { }
int index ;
double a ;

} ;

class Row : public std::vector<Coeff> {
public:

void add(int index, double val) {
for(int i=0; i<size(); i++) {

if((*this)[i].index == index) {
(*this)[i].a += val ;
return ;

}
}
std::vector<Coeff>::push_back(Coeff(index, val)) ;

}
} ;

SparseMatrix(int dim) : dimension(dim) {
row = new Row[dim] ;

}

~SparseMatrix() { delete[] row; }

// aij <- aij + val
void add(int i, int j, double val) {

row[i].add(j, val) ;
}

// A <- 0
void clear() {

for(int i=0; i<dimension; i++) {
row[i].clear() ;

}
}

// number of non-zero coefficients
int nnz() const {

int result = 0 ;
for(int i=0; i<dimension; i++) {

result += row[i].size() ;
}
return result ;

}
int dimension ;
Row* row ;

} ;
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Algorithm 6 Matrix × vector product with the dynamic data structure
// y <- Mx
void mul(double* y, const SparseMatrix& M, const double* x) {

for(int i=0; i<M.dimension; i++) {
y[i] = 0 ;
const Row& R = M.row[i] ;
for(int jj=0; jj<R.size(); jj++) {

y[i] += R[jj].a * x[ R[jj].index ] ;
}

}
}

Algorithm 7 Converting a dynamic sparse matrix into the CRS format
void convert_to_CRS(

const SparseMatrix& M,
CRSMatrix& M_CRS,
int array_base // 0 for C, 1 for Fortran

) {
M_CRS.N = M.dimension ;
M_CRS.NNZ = M.nnz() ;
M_CRS.A = new double[M_CRS.NNZ] ;
M_CRS.col_ind = new int[M_CRS.NNZ] ;
M_CRS.row_ptr = new int[M_CRS.N+1] ;
int count = 0 ;
for(int i=0; i<M_CRS.N; i++) {

const SparseMatrix::Row& R = M.row[i] ;
M_CRS.row_ptr[i] = count + array_base ;
for(int jj=0; jj<R.size(); jj++) {

M_CRS.a[count] = R[jj].a ;
M_CRS.col_ind[count] = R[jj].index + array_base ;
count++ ;

}
}
M_CRS.col_ptr[M_CRS.N] = M_CRS.NNZ + array_base ;

}
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× vector products need to be computed (e.g., in a Conjugate-Gradient based iterative
solver described later), it may be more efficient to convert the dynamic matrix into the
CRS format. The conversion routine can be also used to interface the dynamic matrix
data structure with sparse direct solvers (SuperLU, TAUCS, MUMPS, etc.) that use
the CRS format. The source code of the conversion routine is given in Algorithm 7.
This function is not difficult to implement. The only thing that one needs to take care
of is the additional parameter array_base that deserves some explanations. The C and
FORTRAN languages do not use the same convention for array indexing. The first entry
of an array is indexed by 0 in C, and by 1 in FORTRAN. For this reason, if the CRS
matrix is meant to be used by a FORTRAN routine, this parameter needs to be set to 1.

Now that we have seen the elementary data structures for sparse matrices, the algo-
rithm to manipulate them and their implementation in C and C++, we will see some
popular algorithms to solve linear systems.

10.2 Solving Linear Systems

A wide class of geometric modeling problems require to solve a large sparse linear system,
i.e. an equation of the form Ax = b, with A that denotes a n × n non-singular square
matrix, b a vector of dimension n, and x the unknown vector (of dimension n). In this
section, we describe several methods to solve these linear systems.

10.2.1 Relaxation

The relaxation method is the most simple, both from the conceptual and the implemen-
tation points of view. This method was widely used in the 90’s to implement geometry
processing algorithm. It was then later replaced by more efficient algorithms, listed
below.

The relaxation method can be easily understood by considering the problem Ax = b
as a linear system: 

a1,1x1 +a1,2x2 + . . . +a1,nxn = b1
...

ai,1x1 +ai,2x2 + . . . +ai,nxn = bi
...

an,1x1 +an,2x2 + . . . +an,nxn = bn

The method consists in traversing the equations one by one, and compute for each
equation i the value of xi obtained by pretending that all the other variables xj for j 6= i
are known. This gives the following update scheme for the variable xi:

xi ←
1

ai,i

(
bi −

∑
j 6=i

ai,jxj

)
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The complete algorithm for the relaxation method then writes:

while ‖Ax− b‖ < ε
for i from 1 to n

xi ← 1
ai,i

(
bi −

∑
j 6=i ai,jxj

)
end//for

end//while

with ε the precision specified by the user. It is also possible to specify a maximum
number of iterations, so that the algorithm stops even if it does not converge.

As can be seen, this algorithm cannot be applied to matrices with zero values on the
diagonal. More generally, it is possible to prove a sufficient condition for convergence.
If the matrix is diagonal dominant, i.e.

∀i,∀j 6= i, |ai,i| > |ai,j|

then the algorithm converges.
It is possible to speed-up this algorithm, by using the fact that the update applied

to each variable xi “points toward the right direction”. Intuitively, going “a bit further”
in that direction, by multiplying the displacement by a factor ω, is likely to accelerate
the speed of convergence. The so-modified update scheme writes:

xprev ← xi

xi ← 1
ai,i

(
bi −

∑
j 6=i ai,jxj

)
xi ← xprev + ω(xi − xprev)

This update scheme first computes the update of xi as before, and then multiplies this
displacement relative to the previous value xprev by a factor ω. It is possible to prove
that the algorithm converges under the same conditions as relaxation (diagonal dominant
matrix), and for ω ∈ [1, 2[. The so-modified algorithm is referred to as SOR (successive
over-relaxation). By rewriting the update scheme in a more compact form, the complete
SOR algorithm is given by:

while ‖Ax− b‖ < ε
for i from 1 to n

xi ← (1− ω)xi + ω
ai,i

(
bi −

∑
j 6=i ai,jxj

)
end//for

end//while

The optimal choice for the parameter ω is determined by the eigenvalues of the matrix
A. Generally, computing those eigenvalues is much more expensive than solving the
system. For this reason, either a theoretical study of the numerical problem can give
the optimal ω, or it is determined in an empirical way.

The main advantage of the SOR method is its simplicity, from both the conceptual
and implementation point of view. This simplicity favored its use in the geometry
processing community [Taubin, 1995]. However, as we will see later, the community now
uses more efficient methods, such as the conjugate gradient and sparse direct solvers.
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10.2.2 The conjugate gradient method

The conjugate gradient method is much more efficient, and does not require much efforts
to be implemented. This algorithm is based on the equivalence between solving the linear
system Ax = b and minimizing the quadratic form F (x) = 1/2xtAx−btx. More precisely,
the algorithm computes a basis of vectors that is orthogonal in the space of the matrix
(i.e. a basis of conjugate vectors), by applying the Gram-Schmidt orthogonalization
algorithm. Fortunate simplifications in the computations make it possible to obtain the
vectors of the basis one by one, by only keeping one vector in memory. The next one is
then obtained as a linear combination of the previous one and the gradient ∇F = Ax−b
at the current point x. The complete algorithm writes:

Algorithm 8 Pre-conditioned Conjugate Gradient
i← 0; r← b−Ax; d←M−1r;
δnew ← rTd; δ0 ← δnew;
while i < imax et δnew > ε2δ0

q← Ad; α← δnew

dT q
;

x← x + αd; r← r− αq;
s←M−1r; δold ← δnew;
δnew ← rT s; β ← δnew

δold
;

d← r + βd; i← i + 1;
end

In this algorithm, the matrix M , called a preconditioner, allows to speed-up the
speed of convergence of the algorithm. For instance, the Jacobi preconditioner is simply
equal to the diagonal terms of the matrix A. More sophisticated preconditioners exist,
however, our experiments have shown that reasonably efficient results are obtained with
the Jacobi preconditioner.

As can be seen in this algorithm, the most complicated operation is a matrix ×
vector product. All the other computations are simply dot products between vectors,
and linear combinations of vectors.

The conjugate gradient method cannot be applied to non-symmetric matrices. For
a non-symmetric matrix, it is possible to apply the conjugate gradient method to the
normal equation AtAx = Atb. The resulting method is called conjugate gradient squared
(CGSQ). However, since this squares the condition number, the loss of numerical stability
makes this method not suitable in general.

Another idea consists in deriving from the system Ax = b an equivalent symmetric
system, as follows: (

Id A
At 0

)(
0
x

)
=

(
b
0

)
It is then possible to applied the conjugate gradient method to this system. This defines
the BiCG algorithm Bi Conjugate Gradient. A variant named BiCGSTAB (stabilized
BiCG) accelerates the speed of convergence.
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Name Location
OpenNL http://alice.loria.fr/software
SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/
TAUCS http://www.tau.ac.il/~stoledo/taucs/
MUMPS http://graal.ens-lyon.fr/MUMPS/
UMFPAK http://www.cise.ufl.edu/research/sparse/umfpack/

Table 10.1: Some freely available sparse direct solvers.

The reader interested in more details about the underlying theory can read the
excellent tutorial by Shewchuk [1994] that is available on the web.

10.2.3 Sparse direct solvers

Another method to solve a linear system consists in factorizing the matrix, into a product
of matrices that are simple to invert. For instance, the LU factorization consists in
finding the lower triangular matrix L and the upper triangular matrix U such that the
product LU is equal to the matrix A of the system. If the matrix is symmetric, U
corresponds to the transpose of L. Once this factorization is obtained, it is then very
easy to solve linear systems that involve A = LU , as follows:

LUx = b →
{

Lx1 = b
Ux = x1

Thus, this algorithm solves the linear system by solving two triangular systems (by
successive substitutions). From a conceptual point of view, the Gauss pivot method
taught in class corresponds to this algorithm (formalized in a slightly different way).

In the case of sparse matrices, different methods can compute the factors L and U ,
also represented by sparse matrices. The corresponding algorithms are quite difficult to
implement. Fortunately, different libraries, available on the net, propose freely available
implementations (see Table 10.1). Our OpenNL front-end provides an OpenGL-like API
to construct a sparse linear system row by row, to remove degrees of freedom as explained
in Section 10.4.3 and then solves the linear system either with its built-in iterative solver,
or with one of the interfaced sparse direct solver.

As remarked by Botsch et al. [2005], this direct solvers are particularly efficient for
geometry processing problems with surface meshes. Among these solvers, TAUCS has
the noticeable functionality of operating in an Out-Of-Core manner, by storing the L
and U factors on the disk. This makes it possible to solve huge linear systems.

10.2.4 Conclusions on linear solvers

We conclude this subsection with a short summary of these linear system solvers (Ta-
ble 10.2). In a nutshell, SOR-like methods are both easy to understand and to implement,
but do not perform well for more than 10K variables. The conjugate-gradient method re-
alizes a good trade-off between the ease of implementation and efficiency. Direct sparse
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method pros cons
relaxation - SOR easy to implement inefficient

low memory cost
conjugate gradient easy to implement reasonably efficient

low memory cost
direct methods the most efficient high memory cost

public codes available implementations are complex

Table 10.2: Classes of linear solver, pros and cons.

solvers are the most efficient, but may sometimes consumes considerable amounts of
RAM. Finally, direct solvers with Out-Of-Core storage [Meshar et al., 2006] let the user
benefit from the high efficiency of sparse direct solvers while keeping the control of the
used amount of RAM.

10.3 Functions of many variables

We now focus on functions F : x 7→ F (x) from Rn to R. For instance, such a function
can formalize the geometric criterion that should be met by a surface. In this context,
the arguments of the functions is a vector x that gathers all the coordinates at all the
vertices of the mesh. The function returns a real number that measures the “fairness” of
the so-described geometry (in the usual definitions, lower values of this quantity corre-
spond to a better quality). The optimization algorithm then seeks for the parameters of
the function—i.e. the coordinates at the vertices—that minimize the function. In this
context, such a function is also called an “energy”, or an “objective function”. Variational
methods minimize an objective function by studying the variations of F (x) in function
of the parameters x = [x1, . . . xn]. These variations are formalized by the derivatives of
F (x). More specifically, we will focus on methods that operate at order 2. This requires
to define the notion that corresponds to the first order derivative for multivariate func-
tions (called the gradient) and the one that corresponds to the second order derivative
(called the Hessian). We will then study some theorems that facilitate the computations
in expressions that combine the derivatives of F .

10.3.1 The gradient

The differential information at order 1 is represented by the vector of all derivatives
relative to all variables, called the gradient of F , and denoted by ∇F :

∇F =


∂F/∂x1

...
∂F/∂xi

...
∂F/∂xn
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Figure 10.4: Stationary points. The points P1 and P4 are local maxima, P2 is an
inflexion point, P5 is a local minimum and P3 is the global minimum.

The notion of gradient is very useful in minimization, since a minimum is character-
ized by the fact that the gradient of F is zero (if F is C1). However, the zero-set of the
gradient (also called the set of stationary points) also contains other points, as shown in
Figure 10.4 for the univariate case. First, a minimum can be local (rather than global),
but the situation can be even worse: a stationary point can also be a (local or global)
maximum. It can also be an inflexion point. To further characterize a stationary point,
it is also necessary to check the sign of the second order derivative.

We now give little theorems that facilitate calculation with gradients:

(1) ‖x‖2 = xtx

(2) ∇(btx) = ∇(xtb) = b

(3) ∇(xtAx) = (A + At)x = 2Ax if A is symmetric

(1) is just an easy way of unifying the squared norm of a vector and matrix products
(we will use it later). (2) is also trivial. To prove (3), we expand xtAx and compute its
derivatives relative to the variables xi:
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Figure 10.5: Stationary points. A: local minimum (positive definite Hessian); B: local
maximum (negative definite Hessian); C: gutter (positive but non-definite Hessian); D:
saddle point (Hessian with positive and negative eigenvalues)

xtAx =
∑
k1

∑
k2

ak1,k2xk1xk2

∂xtAx
∂xi

= ∂
∂xi

(
ai,ix

2
i + xi

∑
k2 6=i

ai,k2xk2 + xi

∑
k1 6=i

ak1,ixk1

)

= 2ai,ixi +
∑

k2 6=i

ai,k2xk2 +
∑

k1 6=i

ak1,ixk1

=
∑
k2

ai,k2xk2 +
∑
k1

ak1,ixk1

=
∑
j

(ai,j + aj,i)xj

One can check that this expression corresponds to the i-th row of (A + At)x.

10.3.2 The Hessian

The differential information to order 2 is represented by the matrix of all second order
derivatives relative to all couples of variables (xi, xj), called the Hessian of F , and
denoted by ∇2F :

∇2F =


∂2/∂x1,x1 . . . ∂2/∂x1,xn

...
...

∂2/∂xn,x1 . . . ∂2/∂xn,xn


As for univariate functions, it is possible to compute a Taylor series expansion for a

multivariate function, around a point x0. This gives a good (second order) approximation
of F (x0 + p) as a function of the displacement vector p from x0:

F (x0 + p) ' F (x) + pt (∇F (x0)) + 1/2pt
(
∇2F (x0)

)
p
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As previously mentioned, the Hessian gives more information about a stationary
point. Figure 10.5 shows some configurations that can be encountered in the case of a
function of two variables. According to the sign of the eigenvalues of the Hessian, the
configuration is a local minimum (A), a local maximum (B), a gutter (C), or a saddle
point (D). Therefore, to minimize a function F , finding the zero-set of the gradient is in
general not sufficient. One also needs to check the sign of the eigenvalues of the Hessian.
Even if they are positive, this may be a local minimum.

10.4 Quadratic Optimization

10.4.1 Quadratic Forms

A quadratic form is a polynomial function such that the degree of its terms is not larger
than 2. It is always possible to write a quadratic form as follows:

F (x) = 1/2xtGx + xtc + α

where G is a n × n symmetric matrix, c is a vector of Rn, and α a scalar. Finding the
stationary point(s) of a quadratic form is quite easy, by studying its gradient:

∇F (x) = 0⇔ Gx + c = 0

Thus, minimizing a quadratic form or solving a symmetric linear system are two problems
that are equivalent.

10.4.2 Least squares

We suppose that we want to solve a linear system of equations such that the number m
of equations is greater than the number n of variables:

a1,1x1 + . . . + a1,nxn = b1
...

am,1x1 + . . . + am,nxn = bm

or Ax = b. In the general case, the system has no solution. It is then possible to try
to find the “least bad” solution, i.e. the vector x that minimizes the sum of the squared
residuals:

F (x) =
m∑

i=1

(
n∑

j=1

ai,jxj − bi

)2

= ‖Ax− b‖2

The function F is a quadratic form, that can be written as follows (Theorem (1)):

F (x) = ‖Ax− b‖2 = (Ax− b)t(Ax− b) = xtAtAx− 2xtAtb + btb

(the two terms xtAtb and btAx are equal, since they are scalars, or 1 × 1 matrices,
that are symmetric). The vector x that minimizes F is such that ∇F = 0. Therefore
(Theorems (2) and (3)):

∇F (x) = 2AtAx− 2Atb = 0
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We retrieve the classical formula for the least squares, also called linear regression. The
vector x that minimizes ‖Ax− b‖2 satisfies AtAx = Atb.

10.4.3 Least squares with reduced degrees of freedom

For some algorithms, it may be useful to remove some degrees of freedom of the system,
by fixing some parameters of the objective function. Formally, this means that the vector
x of parameters is partitioned into two sub-vectors x = [xf |xl]. The first nf components
xf = [x1 . . . xf ] correspond to the free parameters, and the remaining n−nf components
xl = [xnf+1 . . . xn] correspond to the locked parameters. Thus, the function F solely
depends on the vector xf , and rewrites:

F (xf ) = ‖Ax− b‖2 =

∥∥∥∥∥∥∥∥[Af | Al]


xf

xl

− b

∥∥∥∥∥∥∥∥
2

Partitioning the vector x into two subvectors [xf , xl] naturally partitions the matrix
A into two submatrices Af , Al (in the product Ax, the coefficients of A that weight
parameters in xf are in Af , and those that weight parameters in xl are in Al). It is then
possible to isolate the terms that depend of xf :

F (xf ) = ‖Afxf + Alxl − b‖2

By introducing b′ = Alxl − b, and by using the least-squares formula proved in the
previous section, one retrieves the equation satisfied by the minimizer xf of F :

At
fAfxf = At

fb
′ or At

fAfxf = At
fb− At

fAlxl

10.5 Non-linear optimization

We now focus on the more difficult problem of minimizing non-linear functions. In this
section, we present the Newton method, that can compute a stationary point of a non-
linear function. Other methods exist and the interested reader may read reference books
[Nocedal and Wright, 2006] for more details.

10.5.1 Univariate functions

We first consider the case of a univariate function. The following algorithm iteratively
computes a stationary point of the function f :

while |f ′(x)| > ε
p← −f ′(x)/f ′′(x)
x← x + p

end // while
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The algorithm works as follows: at each step, we compute the second order of the
function f around the current point x. This approximation is called a model function,
since it gives a good approximation (or a good model) of the variations of f around x
in function of a displacement p:

f(x + p) ' f̃x(p) = f(x) + pf ′(x) + p2/2f ′′(x)

Then, the algorithm computes the displacement p that minimizes the model function.
This gives:

f̃ ′x(p) = 0
f ′(x) + pf ′′(x) = 0
p = −f ′(x)/f ′′(x)

Finally, the current location is updated: x ← x + p, and the algorithm iterates all the
previous steps.

10.5.2 Multivariate functions

The previous (univariate) algorithm can be easily adapted to the multivariate case. As
we have seen in the previous section, the second order Taylor expansion of a multivariate
function F writes:

F (x + p) ' F̃x(p) = F (x) + pt (∇F (x)) + 1/2pt
(
∇2F (x)

)
p

It is clearly a quadratic form. We then find the displacement p p that minimizes this
quadratic form:

∇F̃x(p) = 0
(∇F (x)) + (∇2F (x)) p = 0

p = − (∇2F (x))
−1

(∇F (x))

The Newton algorithm for multivariate functions can then be given by:

while ‖∇F (x)‖ > ε
solve (∇2F (x))p = −(∇F (x))
x← x + p

end // while

In other words, to minimize a non-linear function, the Newton algorithm minimizes
a series of quadratic form (by solving a series of linear systems). To solve those linear
systems, one may use one of the methods listed in Section 10.2.
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10.6 Constrained Optimization: Lagrange Method

We now focus on the problem of constrained optimization. A constrained optimization
problem can be formalized by:

minimizeF (x) with


G1(x) = 0
G2(x) = 0

...
Gm(x) = 0

where F and G1, G2 . . . Gm are functions from Rn to R. The functions Gi are called
constraints. An important theorem, known as the KKT condition2, states that the
minimizer of F that satisfies the Gi constraints is also a stationary point of the function
L, defined by:

L(x, λ) = F (x) +
m∑

i=1

λiGi(x)

The function L, called the Lagrangian of the constrained optimization problem, depends
of m additional λi parameters, associated with the m constraints Gi.

The stationary points of the Lagrangian L can be found by the Newton method,
presented in the previous section.

2Named after its authors, Karush, Kuhn and Tucker
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